

Bioorganic & Medicinal Chemistry 14 (2006) 8467-8487

Bioorganic & Medicinal Chemistry

Structure—activity studies of cyclic ketone inhibitors of the serine protease plasmin: Design, synthesis, and biological activity

Fengtian Xue and Christopher T. Seto*

Department of Chemistry, Brown University, 324 Brook Street, Box H, Providence, RI 02912, USA

Received 20 July 2006; revised 23 August 2006; accepted 28 August 2006

Available online 12 September 2006

Abstract—Three series of cyclic ketone inhibitors were synthesized and evaluated against the serine protease plasmin. Peptide inhibitors that incorporated 3-oxotetrahydrofuran and 3-oxotetrahydrothiophene 1,1-dioxide groups had the highest activities. Alkylamino substituents, which were designed to bind in the S1 subsite of plasmin, were attached to the inhibitors. Compounds **5c** and **5g**, which incorporated 6-aminohexyl substituents, were found to be optimal and demonstrated IC_{50} values in the low micromolar range. Incorporating conformationally constrained peptide segments into the inhibitors did not improve their activities. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Proteases catalyze the hydrolysis of amide bonds in peptides and proteins. They play pivotal regulatory roles in many biological processes such as fertilization, digestion, growth, maturation, and death by controlling the activation, synthesis, and turnover of proteins. The uncontrolled activities of proteases contribute to a large number of diseases including cardiovascular diseases,² neurodegenerative disorders,³ parasitic, fungal, and viral infections,^{4–6} and cancer.^{7,8} For example, many tumors have elevated levels of proteases at all stages of cancer progression and metastasis, which make these enzymes attractive targets for anticancer therapies. Plasmin, a trypsin-like serine protease, is implicated in the proteolytic modification of the extracellular matrix (ECM). During the ECM remodeling process that occurs during cancer-induced angiogenesis, proteases break down the ECM and basement membrane, allowing cancer cells to migrate to other organs and generate secondary metastases. Plasmin processes a broad spectrum of substrates including fibrin, which is a component of the ECM, glycoproteins such as laminin and fibronectin, and proteoglycans. It also activates other proteases including the pro-metalloproteinases MMP-1, MMP-3, and MMP-9. Furthermore, plasmin activates or releases a number of growth factors from

controlling angiogenesis and metastasis by blocking degradation of the basement membrane and the activation of other enzymes.

Plasmin inhibitors can be divided into two classes. The first class constitutes inhibitors that target the lysine binding site of the enzyme. Notable examples include ε-aminocaproic acid¹⁰ and trans-4-aminomethylcyclo-

the ECM including latent transforming growth factor (TGF-β), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF). Thus, inhi-

bition of plasmin provides a promising mechanism for

first class constitutes inhibitors that target the lysine binding site of the enzyme. Notable examples include e-aminocaproic acid¹⁰ and *trans*-4-aminomethylcyclohexane carboxylic acid, both of which have been used in the clinic.¹¹ The second class of inhibitors target the active site of plasmin. For example, Okada and coworkers have developed a variety of synthetic inhibitors of this type that show good potency and selectivity.¹²⁻¹⁰

Our efforts have been focused on the development of active-site directed, reversible inhibitors of plasmin. $^{20-26}$ Structure 1 represents a series of 4-heterocyclohexanone-based inhibitors. The cyclic ketone in inhibitor 1 is designed to react with the nucleophilic Ser residue in the active site of enzyme, while the attached peptide binds in the S1–S3 subsites. In previous work, we have shown that replacement of the C4 carbon atom of the cyclohexanone with electron-withdrawing groups such as O, S or SO₂ improves the activity of inhibitors. However, the strategy that we used to synthesize the inhibitors was inefficient. Inhibitor 2, which has an IC₅₀ value of 2.7 μ M, was discovered using two positional scanning combinatorial libraries based around the

Keywords: Serine protease; Plasmin; Inhibitor; Cyclic ketone.

^{*}Corresponding author. Tel.: +1 401 863 3587; fax: +1 401 863 9368; e-mail: Christopher_Seto@brown.edu

$$S_2$$
 NH_2
 S_2
 NH_2
 NH_3
 NH_4
 NH_5
 NH_5
 NH_5
 NH_6
 NH_7
 NH_8
 NH_8
 NH_8
 NH_9
 NH

cyclohexanone nucleus. In the context of these inhibitors, we found that plasmin prefers to bind compounds with Trp at the P3, P2, and P2' positions, and Tyr at the P3' position. A number of other laboratories have reported cyclic ketone inhibitors for several serine and cysteine proteases including cathepsins K and L.^{27–32}

In this article, we report an improved strategy for the preparation of cyclic ketone-containing inhibitors that is significantly more efficient than our previously reported route. Using this strategy, we prepared several series of inhibitors 3–5 (Fig. 1) to further explore the structure-activity relationships of these compounds. Three issues that we wanted to investigate included optimal ring size of the cyclic ketone, the effect of electronegative substituents on cyclopentanone-containing inhibitors, and the optimal length and rigidity of alkylamino substituents that are targeted to the S1 subsite. We also prepared inhibitors 6a–c that incorporate conformationally constrained peptide subunits (Fig. 2). There are many examples of conformationally constrained protease inhibitors published in the literature, and Fairlie has recently re-

viewed this area.^{33–37} Conformational constraint provides two major advantages. First, it decreases the entropic penalty for binding by lowering the flexibility of the inhibitor in the unbound state. Second, conformationally constrained analogs of peptidic inhibitors often show enhanced bioavailability because they are less susceptible to proteolytic degradation. Inspired by Fairlie's work, we prepared conformationally constrained inhibitors **6a–c** in an attempt to improve both potency and stability.

2. Results and discussion

2.1. Chemistry

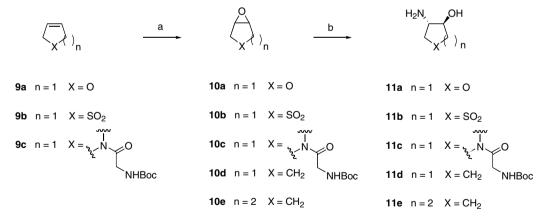

The syntheses of the inhibitors described in this article are outlined in Schemes 1–7. All inhibitors were constructed in two parts: a linear or macrocyclic dipeptide and a cyclic α -aminoketone core. Dipeptides **8a–c** were synthesized using a two-step procedure (Scheme 1). First, compounds **7a–c** were prepared by coupling two

Figure 1. Structures of inhibitors 3–5.

Figure 2. Design of conformationally constrained macrocyclic inhibitors 6a-c.

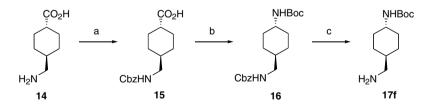
R₁HN
$$\stackrel{\bullet}{\longrightarrow}$$
 $\stackrel{\bullet}{\longrightarrow}$ $\stackrel{\bullet}{\longrightarrow}$

Scheme 1. Reagents and conditions: (a) 2 M NaOH, MeOH, rt, 1–2 h (98–100%).

Scheme 2. Reagents and conditions: (a) m-CPBA, CH₂Cl₂, reflux, 24–48 h (64–90%); (b) NH₄OH (30% in H₂O), microwave irradiation, 85 °C, 30 min (65–100%).

appropriately protected amino acids using O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) and N,N-diisopropylethylamine (DIEA). Second, the methyl esters were saponified to give carboxylic acids 8a–c.

The syntheses of β -aminoalcohols 11a–e started with epoxidation of alkenes 9a–c using m-CPBA to give compounds 10a–c (Scheme 2). The epoxides were

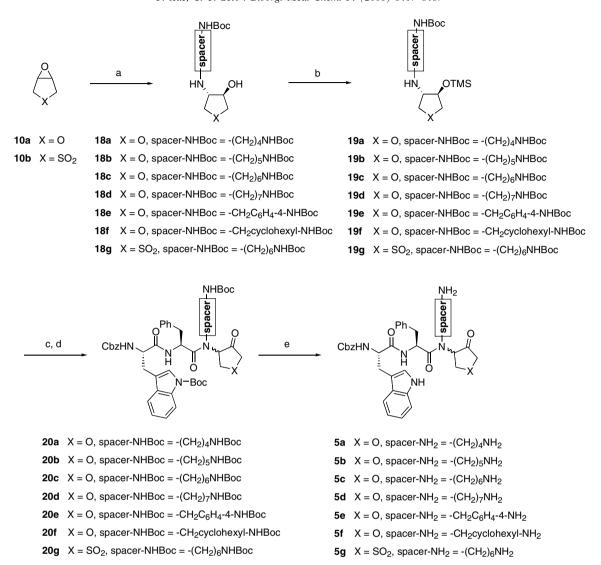

subsequently opened with aqueous ammonium hydroxide under microwave irradiation to cleanly afford β -aminoalcohols 11a—e in good to excellent yields.

As shown in Scheme 3, inhibitors **3a–c** were prepared by coupling aminoalcohol **11a** with dipeptides **8a–c** in the presence of 1-hydroxybenzotriazole (HOBt) and 1-[3-(dimethyl-amino)propyl]-3-ethylcarbodiimide hydrochloride (EDC). The resulting secondary alco-

$$R_1HN$$
 R_1HN
 R_1H

Scheme 3. Reagents and conditions: (a) 11a, HOBt, EDC, rt, 12 h; (b) Dess-Martin periodinane, rt, 0.5-4 h (55-62% for two steps); (c) TFA, CH₂Cl₂, rt, 2 h (88-90%).

Scheme 4. Reagents and conditions: (a) 11b-e, HOBt, EDC, rt, 12 h (73–80%); (b) Dess–Martin periodinane, rt, 0.5–4 h (65–87%); (c) TFA, CH₂Cl₂, rt, 2 h (80–92%).



Scheme 5. Reagents and conditions: (a) CbzCl, 2 M NaOH, THF/H₂O, rt, 2 h (97%); (b) i—(PhO)₂PON₃, DIEA, 85 °C, 20 h; ii—t-BuOK (91%); (c) H₂, Pd(OH)₂/C, rt, 3 h (100%).

hols were then oxidized using Dess-Martin periodinane to generate cyclic ketones 12a-c. Finally, the Boc-protecting groups were removed with TFA to give inhibitors 3a-c as mixtures of two diastereomers. In a similar fashion, inhibitors 4a-c were prepared starting from dipeptide 8b and aminoalcohols 11b-e (Scheme 4).

To prepare inhibitors 5a-g, we required the series of mono-Boc-protected diamines shown in Figure 3.

Compounds **17a–c** and **17e** are commercially available, while **17d** was prepared following a procedure from the literature.³⁹ The synthesis of diamine **17f**, shown in Scheme 5, started with reaction of *trans*-4-aminomethyl-cyclohexanecarboxylic acid **14** with CbzCl to give carboxylic acid **15**. Curtius rearrangement of this acid and trapping of the resulting isocyanate with *t*-BuOK gave differentially protected diamine **16**. Finally, the Cbz group was removed by catalytic hydrogenation to yield compound **17f**.

Scheme 6. Reagents and conditions: (a) *N*-Boc-protected diamine, H₂O, microwave irradiation, 105 °C, 0.5–1 h (85–92%); (b) i—TMSCl (5 equiv), DIEA (5 equiv), rt, 15 min; ii—MeOH, rt, 12 h (97–100%); (c) 8b, HATU, DIEA, 45 °C, 16 h, then 1 N HCl, 30 min; (d) Dess–Martin periodinane, rt, 2–4 h (50–81% for two steps); (e) TFA, CH₂Cl₂, rt, 2.5 h (59–81%).

With diamines 17a-f in hand, we needed to react them with epoxides 10a and 10b. After examining a number of conditions, we found that aminolysis of these epoxides with the diamines proceeded smoothly in H₂O under microwave irradiation at 105 °C to give β-aminoalcohols **18a**–**g** (Scheme 6).⁴⁰ We were unable to achieve selective O-silylation of the hydroxyl group these compounds. However, we found that reaction of the aminoalcohols with an excess of TMSCl gave the N,O-bis-TMS derivative, which could be cleanly mono-desilylated with methanol to give the desired products 19a-g. Acylation of 19a-g with dipeptide **8b** using *O*-(7-azabenzotriazol-1-yl)-N, N, N', N'-tetramethyluronium hexafluorophosphate (HATU) and DIEA, followed by removal of the TMS group and oxidation of the resulting secondary alcohol with Dess-Martin periodinane generated ketones 20a-g. Finally, the Boc-protecting groups were removed with TFA to provide inhibitors 5a-g as mixtures of two diastereomers.

The syntheses of conformationally constrained inhibitors **6a-c** are detailed in Scheme 7.31 Fmoc-Trp(Boc)-OH was coupled with H₂N-Tyr-OBn (21) using HBTU and DIEA to give dipeptide 22. Attempts to deprotect the Fmoc group with piperidine in DMF generated the diketopiperazine as the major product. However, we found that the Fmoc group could be removed cleanly using a 1:2 mixture of piperidine and CH₂Cl₂ to generate amine 23.41,42 Acylation of 23 with 5-bromopentanoyl chloride, 6-bromohexanoyl chloride, or 8-bromooctanoyl chloride under Schotten-Baumann conditions provided compounds 24a-c in excellent yields. These primary alkyl bromides (24a-c) were treated with NaI in acetone to generate the corresponding iodides, which underwent ring closure in the presence of K₂CO₃ to generate macrocycles 25a-c. The benzyl ester in compounds 25a-c was removed by catalytic hydrogenation, and the resulting carboxylic acids 26a-c were coupled with aminoalcohol 11a using HOBt and EDC. Oxidation of the secondary alcohols with Dess-Martin periodinane

Scheme 7. Reagents and conditions: (a) Fmoc-Trp(Boc)-OH, HBTU, DIEA, rt, 2 h (97%); (b) piperidine/CH₂Cl₂ (1:2), rt, 35 min (84%); (c) bromoalkanoyl chloride, aqueous K_2CO_3 (20%), THF/H₂O (1:1), rt, 5-10 min (95–100%); (d) NaI, acetone, reflux, 2 h; (e) K_2CO_3 , DMF, rt, 10 h (70–76%); (f) H₂, Pd(OH)₂/C, rt, 3-4 h, (75–80%); (g) i—HOBt, EDC, rt, 30 min; ii—11a, rt, 12 h; (h) Dess–Martin periodinane, rt, 2-4 h (48–61% for two steps); (i) TFA, rt, 2 h (64–78%).

17a
$$H_2N$$
 NHBoc 17d H_2N NHBoc 17b H_2N NHBoc 17e H_2N NHBoc 17f H_2N NHBoc NHBoc

Figure 3. N-Boc-protected diamines.

provided ketones **27a–c**. Finally, the Boc-protecting group was removed to give inhibitors **6a–c** as mixtures of two diastereomers.

2.2. Plasmin inhibition studies

IC₅₀ values of the inhibitors were measured for plasmin using the chromogenic substrate D-Val-Leu-Lys-*p*-nitro-

anilide. Plasmin was assayed at 25 °C in a 50 mM sodium phosphate buffer (pH 7.4). A final concentration of 10% DMSO was used in the assay mixtures to ensure solubility of the inhibitors. When measuring the IC₅₀ values, the substrate concentration was held constant at $K_{\rm M}$, which was measured to be 168 μ M. We elected to evaluate the inhibitors as mixtures of two diastereomers. Our own group²⁵ and others⁴³ have reported that,

while heteroatom-containing cyclic ketone inhibitors can be separated into diastereomerically pure compounds, they enolize and thus epimerize under aqueous conditions to reform the original mixture of two diastereomers. Thus, it does not make sense to separate the diastereomers since they epimerize under the assay conditions.

Inhibitors 3a-c were assayed against the serine protease plasmin (Table 1). These three inhibitors incorporate the dipeptides Cbz-Trp-Trp-, Cbz-Trp-Phe-, and H-Trp-Phe- attached to the same 3-amino-4-oxotetrahydrofuran core. Previous studies from our group showed that plasmin typically prefers to bind inhibitors with Trp at the P2 and P3 positions. However, this preference is dependent on the structure of the particular inhibitor, and in some cases Trp and Phe are accommodated equally well at P2.44 In the 4-oxotetrahydrofuran series, inhibitor 3a, which incorporates Trp at both P2 and P3, has an IC₅₀ value of 30 μ M. Inhibitor **3b**, which substitutes Phe in place of Trp at the P2 position, leads to a small improvement in activity with an IC₅₀ of 22 μ M. Removal of the N-terminal Cbz group of inhibitor 3b gave 3c, which is a much weaker inhibitor with an IC_{50} value of 375 μ M. These results indicate that, within the context of the 4-oxotetrahydrofuran inhibitors, plasmin displays a small preference for Phe over Trp at the P2 position. The N-terminal Cbz group is important for activity, and may extend interactions of the inhibitor into the S4 subsite of the enzyme.

We next investigated the influence of the cyclic ketone core on inhibitor potency (Table 2). For inhibitor 4a, the ether oxygen atom in the 3-amino-4-oxotetrahydrofuran core of 3b has been replaced by a methylene group to give a cyclopentanone ring system. This simple change results in a dramatic reduction in activity; the cyclopentanone-based inhibitor displays no inhibition at concentrations up to 1 mM. The ether oxygen atom in 3b enhances the electrophilicity of the ketone carbonyl group through a combination of inductive and field effects. As a result, this ketone is more susceptible to nucleophilic attack by the serine active site nucleophile to give a reversibly formed hemiacetal. For

Table 1. Inhibition of plasmin by inhibitors 3a-c

$$\begin{array}{c|c} R_1HN & P_1 & P_2 \\ \hline & N & P_3 \\ \hline & N & P_4 \\ \hline & N & P_4 \\ \hline & N & P_5 \\ \hline & N & P_5 \\ \hline & N & P_6 \\ \hline$$

Inhibitors	R_1	R_2	IC ₅₀ (μM)
3a	Cbz	22 NH	30 ± 3
3b	Cbz	25/	22 ± 1
3c	Н	25	375 ± 40

Table 2. Inhibition of plasmin by inhibitors 3b and 4a-d

Inhibitors	n	X	IC ₅₀ (μM)
3b	1	О	22 ± 1
4a	1	CH_2	>1000
4b	2	CH_2	>1000
4c	1	SO_2	13 ± 1
4d	1	N-Gly-NH ₂	350 ± 22

inhibitor 4a, these electronic effects are no longer present, which results in decreased electrophilicity of the ketone and reduced inhibitor potency. Compound 4b, which is the cyclohexanone analog of 4a, is also a poor inhibitor. This observation underscores the importance of the electronegative ether oxygen for controlling the activity of the inhibitors.

Since inhibitors **4a** and **4b** both have low activities, we cannot draw conclusions about the effect of ring size on potency from these compounds. However, Marquis and coworkers have investigated the effects of ring size and heteroatom position in a series of cyclic ketone inhibitors of cathepsin K.^{29,43} These investigators found that inhibitors containing tetrahydrofuran-3-one and tetrahydropyran-3-one groups had good activities, and were significantly more potent than an analogue containing a tetrahydropyran-4-one group. We chose the five-membered ring ketones for further investigation.

For inhibitor 4c, we replaced the ether oxygen atom in 3b with a sulfone group. The sulfone serves to enhance the electrophilicity of the neighboring ketone to a greater extent than the ether, and thus should lead to an improvement in activity. This effect is reflected in the inhibition results with 4c showing an approximate 2-fold improvement (IC₅₀ = 13 μ M) compared to inhibitor **3b** (IC₅₀ = 22 μ M). Finally, we synthesized inhibitor 4d that incorporates a nitrogen atom into the five-membered ring. Attached to this nitrogen is a glycine residue, which was added in an attempt to extend the inhibitor so that it makes favorable contacts with other regions of the active site. This compound was a modest inhibitor with an IC₅₀ value of 350 μM. There are two possible explanations for this inhibitor's low activity. First, since the nitrogen atom in the ring is involved with amide resonance, it is only a weak electron-withdrawing group by induction and does not enhance the reactivity of the neighboring ketone to a large extent. Second, the attached glycine reside may extend out of the active site pocket into solution and thus not make favorable contacts with the surface of the enzyme.

The S1 subsite of plasmin is specific for the positively charged side chains of Lys and Arg.⁴⁴ These side chains extend deep into the subsite and form a salt bridge with

an Asp residue at the bottom of the pocket. 44 Inhibitors 3a-c and 4a-d contain amino acids that are designed to interact with the S2 and S3 subsites, but they lack interactions with S1. To address this issue we designed a third series of inhibitors 5a-g that incorporate an alkylamino group targeted toward S1. The alkylamino groups are attached to the inhibitors through a nitrogen atom, rather than being attached directly to the cyclic ketone. We used this 'peptoid'-like arrangement for two reasons. 45 First, it avoids formation of a quaternary center alpha to the electrophilic ketone. Such a quaternary center would likely hinder addition of the active site nucleophile to the ketone due to unfavorable steric interactions, and thus decrease inhibitor potency. Second, from a synthetic perspective, it provides a simple route for making a number of variations to the alkylamino group.

In compounds 5a-d the spacer between the peptide and the amino group has been varied from four to seven methylene units to optimize its length. Since we attach the alkylamino groups via an amide nitrogen atom, they may need to be longer than the side chains of Lys and Arg to make good contacts with the Asp residue at the base of the S1 pocket. As shown in Table 3, inhibitor 5c with a six methylene unit spacer appears to be optimal with an IC50 value of 9 µM. Inhibitors with a spacer that is one methylene unit too short (5b) or too long (5d) show a marked decrease in potency. We also prepared inhibitors 5e and 5f that incorporate more rigid spacers. Between these two compounds, the aromatic ring in 5e provides a better match with the S1 subsite. However, neither compound is an improvement over 5c. Finally, we prepared inhibitor 5g, which is identical to 5c except that the ether oxygen atom has been

Table 3. Inhibition of plasmin by inhibitors 5a-g

Inhibitors	X	Spacers-NH ₂	IC ₅₀ (μM)
5a	О	NH ₂	140 ± 11
5b	O	'82NH2	100 ± 11
5c	O	'2/NH ₂	9 ± 2
5d	O	'z	51 ± 6
5e	O	NH ₂	19 ± 3
5f	O	nH ₂	54 ± 7
5g	SO_2	Y_NH2	5.7 ± 1.0

Table 4. Inhibition of plasmin by inhibitors 6a-c

Inhibitors	n	IC ₅₀ (μM)
6a	1	>300
6b	2	62 ± 5
6c	4	25 ± 2

replaced by an SO_2 group. This change results in a 1.6-fold improvement in activity ($IC_{50} = 9 \,\mu\text{M}$ for **5c** vs 5.7 μ M for **5g**), and is consistent with the 1.7-fold difference in potencies observed between the similar pair of inhibitors, **3b** and **4c** ($IC_{50} = 22 \,\mu\text{M}$ vs 13 μ M).

Table 4 summarizes the data we obtained for the conformationally constrained inhibitors 6a-c. Among these compounds inhibitor 6a, which incorporates the smallest macrocycle, has the weakest activity $(IC_{50} > 300 \,\mu\text{M})$. The macrocyclic ring likely constrains this compound into a conformation that is not compatible with the active site of plasmin. Compound 6b, which has a slightly larger macrocycle, shows some improvement in activity. By comparison inhibitor 6c, which incorporates the largest ring size, has the highest potency in the series with an IC₅₀ value of 25 µM. The benchmark for the macrocyclic inhibitors is compound **3b**, which is the closest linear analog and has an IC₅₀ value of 22 μM. The comparable activities of inhibitors 3b and 6c suggest that they can adopt similar conformations when bound to the enzyme. However, no entropic advantage is gained from the macrocyclic structure of 6c since the macrocycle is formed using a long and flexible seven carbon linker.

3. Conclusion

We have described a new procedure for the synthesis of cyclic ketone-based inhibitors of the serine protease plasmin. Using this procedure we synthesized three families of inhibitors, compounds 3–5. SAR studies of these inhibitors led to the discovery of two inhibitors, 5c and 5g, with significant activity against plasmin. Comparison of inhibitors 3b, 4a, 4c, and 4d showed that for cyclopentanone-based inhibitors, incorporation of electron-withdrawing groups such as O and SO₂ into the ring improves their activities. Alkylamino substituents, with an optimal spacer length of 6 carbon atoms, can be added to the inhibitors to bind in the S1 subsite. Conformationally constrained inhibitors 6a-c were also evaluated, but macrocyclization did not lead to compounds with improved potencies.

4. Experimental

4.1. General methods

All experiments were conducted using anhydrous conditions under an atmosphere of nitrogen, except where stated, with oven-dried apparatus and employing standard techniques for handling air-sensitive materials. All solvents were distilled and stored under argon before use. All reagents were used as received. Aqueous solutions of sodium bicarbonate and sodium chloride (brine) were saturated. Analytical thin-layer chromatography (TLC) plates were visualized by ultraviolet irradiation, ninhydrin or phosphomolybdic acid (PMA) staining solutions. Flash column chromatography was carried out under a positive pressure of nitrogen. ¹H NMR spectra were recorded on 300 MHz or 400 MHz spectrometers. Data are presented as follows: chemical shift (in ppm on the δ scale relative to $\delta = 0.00$ ppm for the protons in TMS), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), coupling constant (J/Hz), which was taken directly from the spectra and are uncorrected, and integration. ¹³C NMR spectra were recorded at 75 or 100 MHz, and all chemical shift values are reported in ppm on the δ scale, with an internal reference of δ 77.0 or 49.0 for CDCl₃ or CD₃OD, respectively. High-resolution mass spectra were measured using electron impact (EI) or fast atom bombardment (FAB) ionization.

4.2. Enzyme assays

IC₅₀ values of inhibitors were measured for plasmin using the chromogenic substrate D-Val-Leu-Lys-p-nitro-anilide. Plasmin (P1867 from Sigma) and substrate were used as received. Plasmin was assayed at 25 °C in a 50 mM sodium phosphate buffer (pH 7.4) with or without inhibitors. A final concentration of 10% DMSO was used in the assay mixtures to ensure solubility of the inhibitors. Initial rates of the enzymatic reactions were determined by monitoring the formation of p-nitroaniline at 405 nm from 30 to 120 s after mixing. When measuring the IC₅₀ of inhibitors, the substrate concentration was held constant at its $K_{\rm M}$ value, which was measured to be 168 μ M. Data analysis was performed using Grafit (Erithacus Software Ltd).

4.3. General methods for synthesis

4.3.1. General method A: synthesis of dipeptides (7a-c, 22). Cbz-Trp(Boc)-OH, Boc-Trp(Boc)-OH or Fmoc-Trp(Boc)-OH (1.5 mmol) was dissolved in DMF (10 mL). To this solution were added H₂N-Trp(Boc)-OMe, H₂N-Phe-OMe, or H₂N-Tyr-OBn (1.5 mmol), HBTU (758 mg, 2.0 mmol), and DIEA (530 μL, 390 mg, 3.0 mmol). The reaction mixture was stirred at room temperature for 2 h and then partitioned between EtOAc (250 mL) and 1 N HCl (200 mL). The organic layer was washed with 1 N HCl (200 mL), saturated NaHCO₃ (200 mL), and brine (150 mL). The organic layer was dried over MgSO₄ and concentrated by rotary evaporation. The crude material was purified by flash

chromatography (EtOAc/hexanes 1:1) to yield dipeptides 7a-c and 22.

- **4.3.2.** General method B: hydrolysis of methyl esters of dipeptides 7a–c. To a solution of compounds 7a–c (1.0 mmol) in MeOH (25 mL), 2 N aqueous NaOH (3.5 mL) was added. The reaction mixture was stirred at room temperature for 1–2 h. The solution was partitioned between EtOAc (300 mL) and 1 N HCl (200 mL). The aqueous layer was extracted once with EtOAc (100 mL), and the organic layers were combined, washed with brine (200 mL), and dried over MgSO₄. The solvent was removed by rotary evaporation to yield carboxylic acids 8a–c.
- **4.3.3.** General method C: synthesis of epoxides 10a-c. To a solution of alkenes 9a-c (28.6 mmol) in CH₂Cl₂ (60 mL) was added *m*-CPBA (13 g). The reaction mixture was heated under reflux for 24–48 h and then cooled to room temperature. The white slurry was filtered. The filtrate was diluted with CH₂Cl₂ (250 mL) and then washed with saturated Na₂SO₃ (300 mL), saturated NaHCO₃ (300 mL), and brine (250 mL). The organic layer was dried over MgSO₄. The crude product was purified by distillation (10a) or flash chromatography (10b-c).
- **4.3.4.** General method D: synthesis of aminoalcohols 11a-e. To a microwave reaction tube were added epoxides 10a-e (3.0 mmol) and aqueous NH₄OH (30%, 4 mL). The tube was sealed and irradiated under microwave at 85 °C for 30 min. The reaction was cooled to room temperature and the solvent was removed by rotary evaporation. The resulting material was dried under vacuum to give aminoalcohols 11a-e (compound 11b was further purified by recrystallization from diethyl ether).
- 4.3.5. General method E: synthesis of ketones 12a-c and 13a-d. To a solution of carboxylic acids 8a-c (0.17 mmol) in CH₂Cl₂ (5 mL) were added HOBt (69 mg, 0.51 mmol), EDC (98 mg, 0.51 mmol), and DIEA (119 µL, 88.4 mg, 0.68 mmol). After stirring the reaction mixture for 30 min, aminoalcohols 11a-e (0.34 mmol) were added dropwise as a solution in DMF (100 µL). The reaction mixture was stirred at room temperature for 12 h and then partitioned between CH₂Cl₂ (100 mL) and 1 N HCl (100 mL). The organic layer was washed with saturated NaHCO₃ (75 mL) and brine (75 mL), and dried over MgSO₄. The solvent was removed by rotary evaporation. The crude material was purified by flash chromatography (EtOAc/hexanes) to yield the product alcohol as a mixture of two diastereomers. The resulting alcohol (90 µmol) was dissolved in CH₂Cl₂. To this solution was added Dess-Martin periodinane (58 mg, 130 µmol). The reaction mixture was stirred at room temperature and monitored by TLC. After the reaction was complete (0.5–4 h), the solution was partitioned between CH₂Cl₂ (50 mL) and saturated Na₂S₂O₃ (30 mL). The organic layer was washed with saturated NaHCO₃ (30 mL) and brine (20 mL), and dried over MgSO₄. The solvent was removed by rotary evaporation, and the crude material

was purified by flash chromatography (EtOAc/hexanes) to yield ketones 12a-c and 13a-d as mixtures of two diastereomers.

- 4.3.6. General method F: synthesis of aminoalcohols 18ag. To compound 10a or 10b (1.5 mmol) were added compounds 17a-f (1.8 mmol) and H₂O (4 mL). The reaction mixture was sealed and stirred with microwave irradiation at 105 °C for 0.5-1 h. The reaction mixture was cooled to room temperature and partitioned between CH₂Cl₂ (8 mL) and saturated Na₂CO₃ (8 mL). The aqueous layer was extracted once with CH₂Cl₂ (8 mL) and the combined organic layers were dried over Na₂CO₃. The solvent was removed by rotary evaporation and the crude material was purified by flash chromatography (5–15% MeOH/CH₂Cl₂) yield compounds 18a-g.
- 4.3.7. General method G: synthesis of TMS ethers 19a-e. Compounds 18a-e (1.1 mmol) were dissolved in CH₂Cl₂ (20 mL). To this solution TMSCl (900 µL, 545 mg, 5.0 mmol) and DIEA (880 µL, 650 mg, 5.0 mmol) were added. The reaction mixture was stirred at room temperature for 15 min and then partitioned between CH₂Cl₂ (200 mL) and H₂O (200 mL). The organic layer was washed twice with H₂O (200 mL) and brine (100 mL), and the solvent was removed by rotary evaporation to yield the N,O-bis-TMS-protected aminoalcohol. This compound was dissolved in dry MeOH (20 mL) and the reaction mixture was stirred at room temperature for 12 h. The solvents were removed by rotary evaporation, and the crude material was purified by flash chromatography (5% MeOH/CH₂Cl₂) to yield TMS ethers 19a-e.
- 4.3.8. General method H: synthesis of ketones 20a-g. To a solution of acid 8b (100 mg, 0.17 mmol) in DMF (1 mL) were added HATU (129 mg, 0.34 mmol), DIEA (90 μL, 67 mg, 0.51 mmol), and **19a–g** (0.34 mmol) as a solution in DMF (100 µL). The reaction mixture was stirred at 45 °C for 16 h, cooled to room temperature, and partitioned between CH₂Cl₂ (100 mL) and 1 N HCl (100 mL). The organic layer was washed with saturated NaHCO₃ (75 mL) and brine (75 mL), dried over MgSO₄ and concentrated. The crude material was purified by flash chromatography (EtOAc/hexanes) to yield the corresponding alcohols as mixtures of two diastereomers. To a solution of the resulting alcohols (60 µmol) in CH₂Cl₂ (10 mL) was added Dess-Martin periodinane (51 mg, 0.12 mmol). The reaction mixture was stirred at room temperature for 2-4 h, then partitioned between CH_2Cl_2 (30 mL) and 10% $Na_2S_2O_3$ (30 mL). The organic layer was washed with saturated NaHCO₃ (30 mL) and brine (30 mL), dried over MgSO₄, and concentrated. The crude material was purified by flash chromatography (EtOAc/hexanes) to yield ketones 20a-g as mixtures of two diastereomers.
- 4.3.9. General method I: deprotection of Boc groups to give inhibitors 3a-c, 4a-d, 5a-g and 6a-c. To solutions of ketones 12a-c, 13a-d, 20a-g, and 27a-c (30 μ mmol) in CH₂Cl₂ (1.5 mL) was slowly added TFA (1 mL). The reaction mixture was stirred at room temperature for

2.5 h. The solvent was removed by rotary evaporation. The crude material was purified by flash chromatography (5–15% MeOH/CH₂Cl₂) to yield inhibitors **3a–c**, **4a–d**, **5a–g**, and **6a–c**.

4.3.10. Characterization of new compounds

- **4.3.10.1. Cbz-Trp(Boc)-Trp(Boc)-OMe (7a).** Compound **7a** was synthesized starting with Cbz-Trp(Boc)-OH and H₂N-Trp(Boc)-OMe²⁵ using general method A (1.07 g, 0.97 mmol, 97%): ¹H NMR (400 MHz, CDCl₃) δ 1.66 (s, 18H), 3.10–3.20 (m, 3H), 3.20–3.30 (m, 1H), 3.59 (s, 3H), 4.40–4.55 (m, 1H), 4.75–4.85 (dd, J = 8.0, 12.0 Hz, 1H), 5.05–5.15 (dd, J = 12.0, 16.0 Hz, 2H), 5.35–5.45 (d, J = 8.0 Hz, 1H), 6.25–6.35 (d, J = 4.0 Hz, 1H), 7.05–7.15 (m, 1H), 7.15–7.27 (m, 2H), 7.28–7.40 (m, 7H), 7.48 (s, 1H), 7.50–7.60 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 28.5, 52.7, 53.1, 67.4, 83.9, 114.8, 115.4, 115.6, 118.9, 119.3, 122.8, 123.0, 124.4, 124.8, 124.9, 128.3, 128.5, 128.8, 149.8, 170.8, 171.4; HRMS-FAB (M+Na⁺) calcd for C₄₁H₄₆NaN₄O₉ 761.3163, found 761.3185.
- 4.3.10.2. Cbz-Trp(Boc)-Phe-OMe (7b). Compound 7b was synthesized starting with Cbz-Trp(Boc)-OH and H₂N-Phe-OMe using general method A (850 mg, 1.42 mmol, 95%): 1 H NMR (400 MHz, CDCl₃) δ 1.65 (s, 9H), 2.90-3.10 (m, 2H), 3.10-3.20 (dd, J = 6.0, 11.2 Hz, 1H), 3.20–3.3 (dd, J = 4.8, 12.0 Hz, 1H), 3.63 (s, 3H), 4.40-4.60 (m, 1H), 4.70-4.80 (dd, J = 4.0, 12.0 Hz, 1H), 5.05-5.20 (d, J = 2.0 Hz, 2H), 5.40-5.60(d, J = 4.0 Hz, 1H), 6.30–6.40 (d, J = 4.0 Hz, 1H), 6.85-6.95 (d, J = 8.0 Hz, 2H), 7.10-7.20 (m, 3H), 7.21-7.27 (m, 1H), 7.30–7.42 (m, 6H), 7.40–7.50 (m, 1H), 7.55–7.65 (m, 1H), 8.10–8.20 (m, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.2, 28.3, 37.9, 52.3, 53.3, 54.9, 60.4, 67.1, 83.7, 115.1, 115.3, 119.1, 122.8, 124.6, 124.7, 127.1, 128.1, 128.3, 128.5, 128.6, 129.1, 130.1, 135.4, 136.1, 149.5, 155.9, 170.3, 171.1; HRMS-FAB $(M+Na^{+})$ calcd for $C_{34}H_{37}NaN_{3}O_{7}$ 622.2529, found 622.2540.
- 4.3.10.3. Boc-Trp(Boc)-Phe-OMe (7c). Compound 7c was synthesized starting with Boc-Trp(Boc)-OH and H₂N-Phe-OMe using general method A (885 mg, 1.56 mmol, 97%): 1 H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H), 1.66 (s, 9H), 2.90–3.00 (d, J = 8.0, 2H), 3.00– 3.30 (m, 2H), 3.64 (s, 3H), 4.40–4.50 (br s, 1H), 4.70– 4.80 (dd, J = 4.0, 11.2 Hz, 1H), 5.05–5.20 (br s, 1H), 6.30-6.50 (d, J = 4.0 Hz, 1H), 6.80-6.90 (d, J = 4.0 Hz, 2H), 7.10–7.20 (m, 3H), 7.20–7.30 (m, 1H), 7.30–7.35 (m, 1H), 7.46 (s, 1H), 7.55–7.65 (d, J = 8.0 Hz, 1H), 8.10-8.20 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 28.2, 37.9, 52.3, 53.3, 54.6, 80.2, 83.6, 115.3, 115.4, 119.1, 122.7, 124.4, 124.7, 127.1, 128.5, 129.2, 130.2, 135.6, 149.5, 155.3, 170.8, 171.2; HRMS-FAB $(M+Na^+)$ calcd for $C_{31}H_{39}NaN_3O_7$ 588.2686, found 588.2695.
- **4.3.10.4. Cbz-Trp(Boc)-Trp(Boc)-OH (8a).** Compound **8a** was synthesized starting with **7a** using general method B (722 mg, 1.0 mmol, 100%): 1 H NMR (400 MHz, CDCl₃) δ 1.63 (s, 18H), 2.80–3.40 (m, 4H), 4.35–4.75 (m, 1H), 4.76–5.25 (m, 3H), 5.60–5.90 (d,

- J = 6.0 Hz, 1H), 6.80–7.00 (d, J = 6.0 Hz, 1H), 7.01–7.35 (m, 9H), 7.36–7.70 (m, 4H), 7.95–8.25 (m, 2H), 10.00–10.50 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 21.2, 27.6, 28.5, 53.1, 55.3, 67.5, 77.7, 84.2, 115.3, 115.7, 119.2, 119.4, 123.0, 123.1, 124.8, 124.9, 125.0, 128.4, 128.5, 128.9, 130.6, 130.9, 135.6, 135.8, 136.4, 150.1, 156.6, 171.8, 174.7, 177.1; HRMS-FAB (M+Na⁺) calcd for C₄₀H₄₄NaN₄O₉ 747.3006, found 747.3023.
- **4.3.10.5. Cbz-Trp(Boc)-Phe-OH (8b).** Compound **8b** was synthesized starting with **7b** using general method B (585 mg, 1.0 mmol, 100%): 1 H NMR (300 MHz, CDCl₃) δ 1.63 (s, 9H), 2.85–3.00 (dd, J = 6.0, 15.0 Hz, 1H), 3.05–3.25 (m, 3H), 4.50–4.70 (m, 1H), 4.70–4.85 (m, 1H), 4.95–5.15 (m, 2H), 5.60–5.80 (d, J = 9.0 Hz, 1H), 6.60–6.75 (d, J = 6.0 Hz, 1H), 6.80–7.00 (m, 2H), 7.00–7.27 (m, 5H), 7.30–7.40 (m, 5H), 7.41–7.60 (m, 2H), 8.00–8.20 (d, J = 9.0 Hz, 1H), 9.20–9.80 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.4, 28.6, 37.7, 53.7, 55.1, 67.6, 77.7, 84.2, 115.6, 115.7, 119.4, 123.2, 125.0, 125.1, 127.5, 128.4, 128.7, 128.9, 129.0, 129.7, 130.6, 135.8, 135.9, 150.0, 156.6, 171.5, 174.4; HRMS-FAB (M+Na $^+$) calcd for $C_{33}H_{35}NaN_3O_7$ 608.2373, found 608.2385.
- **4.3.10.6. Boc-Trp(Boc)-Phe-OH (8c).** Compound **8c** was synthesized starting with **7c** using general method B (665 mg, 1.0 mmol, 98%): 1 H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 1.65 (s, 9H), 2.80–3.35 (m, 4H), 4.30–4.70 (m, 1H), 4.71–4.98 (m, 1H), 5.30–5.50 (d, J = 4.0 Hz, 1H), 6.70–6.90 (d, J = 4.0 Hz, 1H), 6.91–7.12 (s, 2H), 7.13–7.38 (m, 5H), 7.39–7.55 (s, 1H), 7.56–7.75 (d, J = 8.0 Hz, 1H), 8.00–8.20 (d, J = 6.0 Hz, 1H), 10.00–10.50 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 21.0, 28.1, 28.4, 37.7, 53.5, 54.5, 60.8, 80.7, 83.9, 115.5, 115.7, 119.3, 122.9, 124.5, 124.8, 127.3, 128.7, 129.6, 130.5, 135.7, 135.9, 149.9, 155.9, 171.6, 174.5, 176.8; HRMS-FAB (M+Na $^+$) calcd for $C_{30}H_{37}$ Na N_3O_7 574.2529, found 574.2536.
- **4.3.10.7. Epoxide 10a.** Compound **10a** was synthesized starting with **9a** using general method C (1.7 g, 20 mmol, 71%): 1 H NMR (400 MHz, CDCl₃) δ 3.60–3.70 (d, J = 8.4 Hz, 2H), 3.81 (s, 2H), 4.00–4.10 (d, J = 8.4 Hz, 2H); 13 C NMR (75 MHz, CDCl₃) δ 50.9, 62.4; HRMS-ESI (M+H⁺) calcd for C₄H₇O₂ 87.0446, found 87.0444.
- **4.3.10.8. Epoxide 10b.** Compound **10b** was synthesized starting with **9b** using general method C (2.4 g, 16.3 mmol, 64%): 1 H NMR (400 MHz, CDCl₃) δ 3.30–3.40 (d, J = 12 Hz, 2H), 3.41–3.55 (dd, J = 3, 12 Hz, 2H), 3.90–3.90 (d, J = 3 Hz, 2H); 13 C NMR (75 MHz, CDCl₃) δ 51.8, 53.6; HRMS-ESI (M+Na⁺) calcd for C₄H₆NaO₃S 156.9935 found 156.9915.
- **4.3.10.9. Alkene 9c.** To a solution of 3-pyrroline (500 mg, 7.2 mmol) in DMF (20 mL) were added Boc-Gly-OH (1.4 g, 8 mmol), HBTU (4.1 g, 10.9 mmol), and DIEA (2.5 mL, 1.9 g, 14.4 mmol). The reaction mixture was stirred at room temperature for 2 h and then partitioned between EtOAc (500 mL) and 1 N HCl (500 mL). The organic layer was washed with 1 N HCl

- (300 mL), saturated NaHCO₃ (300 mL), and brine (300 mL). It was dried over MgSO₄, and concentrated. The crude material was purified by flash chromatography (EtOAc/hexanes 1:2–1:1) to yield compound **9c** (1.5 g, 6.5 mmol, 90%): ¹H NMR (400 MHz, CDCl₃) δ 1.40 (s, 9H), 3.75–3.90 (d, J = 4.0 Hz, 2H), 4.10–4.30 (m, 4H), 5.40–5.60 (br s, 1H), 5.70–5.80 (m, 1H), 5.81–6.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.3, 42.8, 52.2, 53.2, 79.6, 124.7, 126.0, 155.9, 166.8; HRMS-ESI (M+Na⁺) calcd for C₁₁H₁₈NaN₂O₃ 249.1215, found 249.1223.
- **4.3.10.10. Epoxide 10c.** The epoxidation of alkene **9c** was accomplished using general method C (1.4 g, 5.4 mmol, 90%): 1 H NMR (300 MHz, CDCl₃) δ 1.44 (s, 9H), 3.35–3.60 (m, 2H), 3.65–3.95 (m, 5H), 3.96–4.05 (d, J=15 Hz, 1H), 5.30–5.50 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.7, 43.4, 47.1, 47.5, 54.8, 55.9, 77.7, 80.1, 156.2, 168.4; HRMS-ESI (M+Na⁺) calcd for C₁₁H₁₈NaN₂O₄ 256.1164, found 256.1169.
- **4.3.10.11. Aminoalcohol 11a.** Compound **11a** was synthesized starting from **10a** using general method D (310 mg, 3.0 mmol, 100%): 1 H NMR (400 MHz, CD₃OD) δ 3.30–3.40 (m, 1H), 3.55–3.62 (dd, J = 4.0, 10.0 Hz, 1H), 3.62–3.68 (dd, J = 3.6, 10.0 Hz, 1H), 4.00–4.10 (m, 2H), 4.10–4.15 (m, 1H); 13 C NMR (75 MHz, CD₃OD) δ 58.9, 72.5, 73.3, 77.1; HRMS-ESI (M+H⁺) calcd for C₄H₁₀NO₂ 104.0712, found 104.0714.
- **4.3.10.12. Aminoalcohol 11b.** Compound **11b** was synthesized starting from **10b** using general method D (310 mg, 3.0 mmol, 65%): 1 H NMR (400 MHz, CD₃OD) δ 3.30–3.40 (d, J = 12 Hz, 2H), 3.45–3.55 (dd, J = 3.0, 12.0 Hz, 2H), 3.90–4.00 (d, J = 2.0 Hz, 2H); 13 C NMR (75 MHz, acetone- d_6) δ 53.6, 56.4, 60.5, 70.8; HRMS-FAB (M+H⁺) calcd for C₄H₉Na-NO₃S 174.0201, found 174.0206.
- **4.3.10.13. Aminoalcohol 11c.** Compound **11c** was synthesized starting from **10c** using general method D (310 mg, 3.0 mmol, 100%): 1 H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H), 2.50–2.90 (br s, 3H), 3.10–3.50 (m, 3H), 3.70–3.95 (m, 4H), 3.95–4.20 (m, 1H), 5.60–5.70 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 28.4, 42.9, 51.2, 51.4, 51.5, 51.8, 56.0, 57.7, 74.6, 76.0, 79.9, 156.1, 167.9, 168.0; HRMS-FAB (M+Na⁺) calcd for $C_{11}H_{21}NaN_3O_4$ 282.1430, found 282.1442.
- **4.3.10.14. Aminoalcohol 11d.** Compound **11d** was synthesized starting from **10d** using general method D (300 mg, 100%): 1 H NMR (300 MHz, CD₃OD) δ 1.30–1.40 (m, 1H), 1.45–1.60 (m, 1H), 1.65–1.80 (m, 2H), 1.90–2.10 (m, 2H), 2.90–3.10 (ddd, J = 1.5, 3, 9 Hz, 1H), 3.70–3.80 (dd, J = 3, 9 Hz, 1H); 13 C NMR (75 MHz, CDCl₃) δ 20.0, 32.2, 32.3, 60.0, 79.7; HRMS-ESI (M+H⁺) calcd for C₅H₉O 85.0653, found 85.0650.
- **4.3.10.15. Aminoalcohol 11e.** Compound **11e** was synthesized starting from **10e** using general method D (345 mg, 3.0 mmol, 90%): ¹H NMR (400 MHz, CDCl₃)

 δ 0.90–1.10 (m, 1H), 1.10–1.30 (m, 3H), 1.50–1.70 (m, 2H), 1.71–1.82 (m, 1H), 1.83–1.95 (m, 1H), 2.30–2.40 (m, 1H), 2.45–2.85 (br s, 2H), 2.90–3.10 (m, 1H); $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) δ 24.8, 25.0, 33.9, 34.3, 56.9, 75.6; HRMS-ESI (M+H⁺) calcd for $C_6H_{14}NO$ 116.1075, found 116.1078.

4.3.10.16. Ketone 12a. Compound 12a was synthesized starting from 8a using general method E (81 mg, 0.10 mmol, 62% for two steps): 1 H NMR (400 MHz, CDCl₃) δ 1.55–1.75 (m, 18H), 2.75–2.98 (m, 1H), 3.00-3.30 (m, 3H), 3.45-3.95 (m, 2H), 3.97-4.50 (m, 4H), 4.70-4.81 (m, 1H), 4.82-5.05 (m, 2H), 5.20-5.70 (m, 1H), 6.50-6.80 (m, 2H), 6.95-7.19 (m, 2H), 7.20-7.40 (m, 8H), 7.41–7.62 (m, 3H), 8.00–8.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 27.0, 27.7, 27.8, 28.4, 53.3, 53.7, 54.6, 54.7, 54.9, 55.0, 55.5, 56.0, 67.5, 67.6, 67.7, 69.4, 69.7, 69.9, 70.2, 77.5, 84.0, 84.2, 84.3, 114.4, 114.6, 115.0, 115.2, 115.3, 115.7, 118.5, 118.6, 119.1, 119.3, 122.80, 122.82, 123.0, 123.1, 123.2, 124.7, 124.8, 124.9, 125.0, 125.1, 125.2, 128.10, 128.17, 128.20, 128.4, 128.5, 128.6, 128.7, 128.8, 128.9, 130.2, 130.3, 130.5, 135.5, 135.6, 135.7, 135.9, 136.0, 137.0, 170.9, 171.0, 171.1, 171.3, 171.4, 171.6, 171.7, 210.3, 210.4, 210.8, 210.9; HRMS-FAB (M+Na⁺) calcd for C₄₄H₄₉NaN₅O₁₀ 830.3377, found 830.3362.

4.3.10.17. Ketone 12b. Compound 12b was synthesized starting from 8b using general method E (62 mg, 93 μmol, 55% for two steps): ¹H NMR (300 MHz, CDCl₃) δ 1.60–1.70 (m, 9H), 2.50–2.90 (m, 1H), 2.90– 3.30 (m, 3H), 3.50–4.55 (m, 6H), 4.60–4.78 (m, 1H), 4.90–5.10 (m, 2H), 5.30–5.70 (m, 1H), 6.20–6.60 (m, 1H), 6.65–6.90 (m, 1H), 6.90–7.10 (m, 2H), 7.10–7.27 (m, 4H), 7.29–7.41 (m, 4H), 7.41–7.60 (m, 2H), 8.00– 8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.0, 28.6, 37.6, 54.0, 54.9, 55.1, 55.2, 55.7, 56.4, 67.7, 67.9, 69.5, 70.0, 70.2, 70.5, 84.5, 115.1, 115.2, 115.3, 115.8, 115.9, 119.3, 119.4, 123.3, 124.9, 125.3, 127.5, 128.3, 128.4, 128.5, 128.6, 128.7, 128.8, 129.0, 129.1, 129.6, 129.7, 130.3, 135.8, 136.0, 136.1, 136.2, 149.9, 156.8, 171.0, 171.2, 171.3, 171.4, 171.6, 171.7, 210.8, 211.4; HRMS-FAB (M+Na⁺) calcd for C₃₇H₄₀NaN₄O₈ 691.2744, found 691.2765.

4.3.10.18. Ketone 12c. Compound 12c was synthesized starting from 8c using general method E (64 mg, 0.10 mmol, 60% for two steps): ¹H NMR (400 MHz, CDCl₃) δ 1.20–1.45 (m, 9H), 1.60–1.75 (m, 9H), 2.40– 2.70 (m, 1H), 2.90-3.30 (m, 3H), 3.60-4.00 (m, 2H), 4.01–4.20 (m, 2H), 4.21–4.50 (m, 2H), 4.55–4.80 (m, 1H), 4.90-5.28 (m, 1H), 6.00-6.50 (m, 1H), 6.70-6.97 (m, 3H), 7.10–7.30 (m, 5H), 7.31–7.45 (m, 1H), 7.46– 7.65 (m, 2H), 8.00–8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.6, 28.4, 28.5, 36.9, 53.5, 54.6, 54.8, 55.0, 55.3, 55.4, 56.1, 69.1, 69.6, 69.8, 70.3, 70.4, 80.0, 80.2, 80.4, 84.2, 84.4, 84.5, 115.1, 115.2, 115.5, 115.6, 115.7, 115.8, 119.1, 119.2, 119.4, 119.5, 123.09, 123.13, 123.17, 124.56, 124.59, 125.09, 125.17, 125.24, 127.4, 129.0, 129.5, 129.6, 130.4, 135.6, 135.7, 135.9, 149.9, 170.9, 171.0, 171.2, 171.4, 210.3, 210.5, 210.7, 210.9; HRMS-FAB (M+Na⁺) calcd for C₃₄H₄₂NaN₄O₈ 657.2900, found 657.2915.

4.3.10.19. Ketone 13a. Compound 13a was synthesized starting from 8b and 11d using general method E (73 mg, 0.11 mmol, 61% for two steps): H NMR (300 MHz, CDCl₃) δ 1.50–1.85 (m, 11H), 1.85–2.15 (m, 2H), 2.25–2.50 (m, 2H), 2.65–3.20 (m, 4H), 3.70– 4.25 (m, 1H), 4.32–4.60 (m, 1H), 4.65–4.80 (m, 1H), 4.85-5.12 (m, 2H), 5.40-5.80 (m, 1H), 6.50-6.70 (m, 1H), 6.70-6.90 (m, 1H), 6.90-7.10 (m, 2H), 7.11-7.27 (m, 5H), 7.29–7.42 (m, 4H), 7.42–7.50 (m, 1H), 7.51– 7.60 (m, 1H), 7.65–8.25 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 18.5, 18.7, 20.4, 28.2, 28.6, 29.6, 29.9, 35.5, 35.6, 38.3, 54.3, 55.6, 56.0, 57.8, 58.1, 67.6, 67.7, 84.2, 115.4, 115.6, 115.7, 115.8, 119.4, 119.5, 123.2, 124.9, 125.1, 125.2, 127.3, 128.3, 128.4, 128.58, 128.62, 128.7, 128.9, 129.0, 129.7, 130.5, 131.7, 132.1, 133.5, 133.6, 135.8, 136.3, 136.4, 136.5, 136.7, 136.9, 149.9, 171.0, 171.1, 171.4, 171.6, 214.7, 215.0; HRMS-ESI (M+Na⁺) calcd for C₃₈H₄₂NaN₄O₇ 689.2951, found 689.2932.

4.3.10.20. Ketone 13b. Compound 13b was synthesized starting from 8b and 11e using general method E (68 mg, 0.10 mmol, 59% for two steps): ¹H NMR (300 MHz, CDCl₃) δ 1.45–1.90 (m, 12H), 2.00–2.20 (m, 1H), 2.20–2.60 (m, 3H), 2.80–3.05 (m, 2H), 3.05– 3.25 (m, 2H), 4.20–4.75 (m, 3H), 4.95–5.15 (m, 2H), 5.40-5.60 (m, 1H), 6.50-6.80 (m, 2H), 6.90-7.10 (m, 2H), 7.10–7.25 (m, 4H), 7.21–7.41 (m, 5H), 7.42–7.50 (m, 1H), 7.50–7.65 (m, 1H), 8.00–8.20 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 23.9, 24.0, 28.3, 28.5, 28.6, 35.1, 35.4, 38.8, 38.9, 41.4, 54.5, 54.6, 54.8, 55.5, 58.3, 58.5, 67.5, 67.6, 77.7, 84.1, 115.5, 115.7, 115.8, 119.5, 123.2, 124.9, 125.0, 125.1, 127.3, 127.4, 128.4, 128.56, 128.58, 128.63, 129.0, 129.6, 129.7, 130.6, 135.8, 136.3, 136.4, 136.5, 136.7, 149.9, 170.0, 170.2, 171.1, 207.1, 207.3; HRMS-FAB (M+Na⁺) calcd for C₃₉H₄₄NaN₄O₇ 703.3108, found 703.3125.

4.3.10.21. Ketone 13c. Compound 13c was synthesized starting from 8b and 11b using general method E (58 mg, 83 μ mol, 47% for two steps): ¹H NMR (300 MHz, CDCl₃) δ 1.55–1.72 (m, 9H), 2.40–2.87 (m, 1H), 2.90-3.25 (m, 3H), 3.30-3.65 (m, 1H), 4.00-4.30 (m, 1H), 4.31–4.75 (m, 2H), 4.85–5.15 (m, 2H), 5.30– 5.70 (m, 1H), 6.05–6.55 (m, 1H), 6.60–6.82 (m, 1H), 6.83-7.00 (m, 1H), 7.05-7.26 (m, 4H), 7.30-7.60 (m, 7H), 8.00–8.20 (m 1H); 13 C NMR (75 MHz, CDCl₃) δ 27.8, 28.6, 36.4, 36.9, 37.2, 53.3, 53.6, 53.9, 54.4, 55.7, 55.9, 56.5, 56.6, 57.1, 57.3, 58.3, 67.8, 67.9, 68.1, 84.7, 114.9, 115.1, 115.9, 116.0, 119.1, 119.4, 123.3, 124.9, 125.4, 127.7, 128.0, 128.1, 128.4, 128.5, 128.8, 128.9, 129.0, 129.1, 129.2, 129.4, 129.5, 129.6, 130.2, 135.4, 135.7, 135.8, 135.9, 136.1, 149.9, 157.0, 171.4, 171.5, 171.6, 172.0, 196.6, 196.7; HRMS-ESI (M+Na⁺) calcd for C₃₇H₄₀NaN₄O₉S 739.2414, found 739.2430.

4.3.10.22. Ketone 13d. Compound **13d** was synthesized starting from **8b** and **11c** using general method E (82 mg, 0.10 mmol, 61% for two steps): 1 H NMR (300 MHz, CDCl₃) δ 1.40–1.50 (m, 9H), 1.50–1.60 (m, 9H), 2.60–3.40 (m, 5H), 3.55–4.20 (m, 5H), 4.21–4.60 (m, 2H), 4.61–4.82 (m, 1H), 4.85–5.10 (m, 2H), 5.35–5.60 (m, 1H), 5.61–6.20 (m, 1H), 6.65–7.05 (m, 3H), 7.06–7.40 (m, 11H), 7.41–7.65 (m, 2H), 8.00–8.20 (m,

1H); 13 C NMR (75 MHz, CDCl₃) δ 28.1, 28.3, 29.0, 37.4, 37.7, 37.8, 42.7, 43.5, 46.9, 47.1, 47.2, 47.5, 51.1, 51.4, 53.6, 53.8, 54.0, 54.2, 55.1, 55.2, 55.6, 56.1, 67.6, 67.8, 84.4, 115.4, 115.5, 115.8, 115.9, 119.3, 119.5, 124.8, 124.9, 128.0, 128.2, 128.3, 128.6, 130.5, 135.7, 135.8, 136.1, 136.2, 136.3, 150.0, 156.2, 156.9, 168.2, 168.3, 168.4, 171.3, 171.5, 171.6, 171.8, 172.1, 205.4, 205.5, 205.6, 205.7; HRMS-ESI (M+Na⁺) calcd for $C_{44}H_{52}NaN_6O_{10}$ 824.3645, found 824.3665.

4.3.10.23. Inhibitor 3a. Compound 3a was synthesized starting from 12a using general method I (52 mg, 85 μmol, 88%): ¹H NMR (300 MHz, DMSO- d_6) δ 2.55-2.82 (m, 1H), 2.83-3.20 (m, 3H), 3.55-3.82 (m, 1H), 3.83-4.04 (m, 2H), 4.05-4.45 (m, 4H), 4.50-4.75 (m, 1H), 4.76-5.05 (m, 2H), 6.90-7.12 (m, 1H), 7.13-7.42 (m, 9H), 7.45-7.65 (m, 3H), 7.66-7.82 (m, 2H), 8.00-8.20 (m, 2H), 8.25-8.80 (m, 2H); ¹³C NMR (75 MHz. DMSO- d_6) δ 28.1. 28.4. 28.6. 28.7. 53.1. 54.3, 55.4, 55.9, 56.4, 66.0, 66.1, 69.2, 69.4, 69.6, 70.5, 110.4, 110.9, 111.0, 112.1, 115.6, 116.4, 116.5, 116.8, 117.1, 117.2, 117.3, 119.1, 119.2, 119.3, 120.1, 121.7, 123.1, 124.6, 125.0, 125.3, 128.1, 128.2, 128.3, 128.5, 129.1, 129.2, 131.0, 131.1, 135.8, 136.8, 136.9, 137.8, 152.2, 152.3, 156.6, 156.7, 156.8, 171.7, 171.9, 172.1, 172.2, 172.3, 172.5, 172.6, 212.4, 212.6; HRMS-FAB (M+Na⁺) calcd for C₃₄H₃₃NaN₅O₆ 630.2329, found 630.2302.

4.3.10.24. Inhibitor 3b. Compound 3b was synthesized starting from 12b using general method I (46 mg, 81 μmol, 90%): ¹H NMR (400 MHz, CD₃OD) δ 2.80–3.25 (m, 4H), 3.26–3.40 (m, 1H), 3.45–3.75 (m, 1H), 3.76–4.13 (m, 2H), 4.15–4.55 (m, 3H), 4.56–4.75 (m, 1H), 4.95–5.15 (m, 2H), 6.90–7.11 (m, 1H), 7.12–7.40 (m, 10H), 7.41–7.70 (m, 2H), 8.05–8.20 (m, 1H); 13 C NMR (100 MHz, CD₃OD) δ 29.1, 29.3, 39.2, 39.4, 56.0, 56.1, 56.3, 56.4, 56.7, 56.8, 57.0, 57.1, 57.3, 57.9, 68.4, 70.8, 71.0, 71.7, 74.0, 74.3, 74.9, 75.4, 76.3, 76.6, 105.9, 106.1, 107.0, 117.8, 117.9, 118.0, 118.1, 120.6, 120.7, 124.4, 126.1, 126.2, 128.5, 129.2, 129.8, 130.5, 130.9, 131.3, 132.3, 132.4, 132.5, 134.2, 137.7, 138.8, 143.0, 153.9, 159.0, 159.1, 173.6, 173.7, 173.9, 174.4, 174.6, 174.8, 212.8, 212.9; HRMS-ESI (M+H $^+$) calcd for $C_{32}H_{33}N_4O_6$ 569.2400, found 569.2428.

4.3.10.25. Inhibitor 3c. Compound 3c was synthesized starting from 12c using general method I (45 mg, 104 μmol, 89%): 1 H NMR (300 MHz, CD₃OD) δ 2.50-3.25 (m, 4H), 3.30-3.48 (m, 1H), 3.50-4.00 (m, 3H), 4.02–4.40 (m, 3H), 4.50–4.80 (m, 1H), 7.00–7.40 $(m, 8H), 7.41-7.75 (m, 2H), 8.10-8.25 (m, 1H); {}^{13}C$ NMR (75 MHz, CD₃OD) δ 28.5, 28.7, 29.1, 29.3, 39.2, 39.4, 39.5, 54.2, 55.0, 55.1, 55.4, 55.5, 55.7, 55.8, 56.4, 56.5, 56.6, 56.7, 56.8, 57.7, 70.4, 70.5, 70.7, 76.3, 105.5, 105.7, 105.8, 108.1, 108.2, 114.6, 114.7, 116.8, 119.5, 120.2, 120.7, 123.3, 124.3, 125.9, 126.2, 126.3, 126.7, 126.9, 127.3, 128.3, 128.4, 128.7, 128.8, 130.7, 131.5, 131.6, 137.6, 138.1, 138.2, 138.3, 138.4, 138.5, 138.6, 138.7, 153.6, 170.0, 170.3, 170.4, 173.1, 173.3, 212.7, 212.8; HRMS-FAB (M+Na⁺) calcd for C₂₄H₂₆NaN₄O₄ 457.1852, found 457.1861.

4.3.10.26. Inhibitor 4a. Compound 4a was synthesized starting from 13a using general method I (32 mg, 55 µmol, 92%) as a mixture of two diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 1.20–1.40 (m, 1H), 1.60– 2.25 (m, 3H), 2.26–2.55 (m, 2H), 2.56–3.03 (m, 2H), 3.04–3.30 (m, 2H), 3.70–4.30 (m, 1H), 4.50–4.90 (m, 2H), 4.90–5.25 (m, 2H), 5.85–6.20 (m, 1H), 6.80–7.27 (m, 9H), 7.29–7.44 (m, 3H), 7.45–7.65 (m, 2H), 7.90– 8.10 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ 18.1, 18.3, 28.1, 28.9, 29.1, 34.9, 35.2, 37.8, 38.2, 54.5, 55.3, 57.8, 57.9, 67.4, 94.8, 113.4, 115.6, 116.3, 119.0, 123.3, 124.5, 125.0, 127.2, 127.9, 128.0, 128.1, 128.3, 128.5, 128.6, 129.2, 129.3, 130.5, 132.0, 133.3, 133.5, 135.3, 135.8, 136.2, 141.9, 153.4, 156.4, 159.3, 159.7, 169.9, 171.9, 172.0, 172.3, 172.7, 214.5, 214.6; HRMS-ESI (M+H⁺) calcd for C₃₃H₃₅N₄O₅ 576.2607, found 576.2625.

4.3.10.27. Inhibitor 4b. Compound 4b was synthesized starting from 13b using general method I (52 mg, 90 μmol, 91%): 1 H NMR (400 MHz, CDCl₃) δ 0.80– 1.35 (m, 1H), 1.48–1.65 (m, 1H), 1.66–1.95 (m, 2H), 2.00-2.20 (m, 1H), 2.21-2.45 (m, 2H), 2.46-2.80 (m, 2H), 2.81-3.00 (m, 1H), 3.00-3.30 (m, 2H), 3.90-4.40 (m, 1H), 4.50–4.90 (m, 2H), 4.91–5.25 (m, 2H), 5.90– 6.30 (m, 1H), 6.80–7.11 (m, 3H), 7.11–7.27 (m, 6H), 7.28–7.40 (m, 4H), 7.45–7.60 (m, 1H), 8.00–8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.8, 27.8, 28.0, 28.2, 34.2, 34.5, 40.8, 54.6, 54.9, 55.0, 55.4, 58.1, 58.2, 58.3, 67.5, 68.4, 110.6, 111.3, 111.4, 113.4, 115.2, 115.7, 116.2, 116.4, 118.5, 119.1, 119.9, 122.3, 122.4, 123.3, 124.4, 124.6, 124.9, 125.1, 125.5, 127.3, 127.8, 127.9, 128.0, 128.3, 128.4, 128.6, 128.7, 129.2, 129.3, 130.6, 132.0, 135.2, 135.8, 136.2, 141.9, 153.5, 156.3, 159.2, 159.6, 160.1, 170.8, 170.9, 171.1, 171.3, 172.4, 172.7, 206.5, 206.8; HRMS-ESI (M+H⁺) calcd for C₃₄H₃₇N₄O₅ 581.2764, found 581.2755.

4.3.10.28. Inhibitor 4c. Compound 4c was synthesized starting from 13c using general method I (45 mg, 72 μmol, 80%): 1 H NMR (400 MHz, CD₃OD) δ 2.65– 3.20 (m, 4H), 3.21-3.30 (m, 3H), 3.40-3.80 (m, 2H), 4.20-4.50 (m, 1H), 4.51-4.75 (m, 1H), 4.76-4.85 (m, 2H), 4.95–5.20 (m, 2H), 6.80–7.40 (m, 12H), 7.41–7.70 (m, 2H), 8.0–8.20 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 28.9, 29.0, 29.1, 37.7, 38.7, 39.0, 39.2, 39.5, 56.1, 56.2, 56.3, 56.7, 57.1, 57.3, 57.4, 57.8, 58.0, 58.4, 58.8, 68.5, 68.6, 102.3, 102.4, 111.2, 111.4, 113.1, 116.9, 117.9, 118.1, 120.0, 120.7, 123.2, 124.4, 124.6, 125.3, 126.1, 126.2, 128.5, 128.6, 128.8, 129.2, 129.3, 129.4, 129.6, 129.7, 130.2, 130.9, 131.0, 131.1, 131.2, 131.7, 132.3, 132.4, 132.5, 134.2, 137.7, 138.7, 143.2, 153.9, 159.0, 174.0, 174.1, 174.2, 174.4, 174.5; HRMS-ESI $(M+H^{+})$ calcd for $C_{32}H_{33}N_{4}O_{7}S$ 616.2070, found 616.2098.

4.3.10.29. Inhibitor 4d. Compound **4d** was synthesized starting from **13d** using general method I (60 mg, 92 µmol, 92%): 1 H NMR (400 MHz, CDCl₃) δ 2.65–3.25 (m, 5H), 3.40–3.90 (m, 5H), 3.97–4.17 (m, 1H), 4.18–4.58 (m, 3H), 4.59–4.76 (m, 1H), 4.77–4.94 (m, 1H), 5.00–5.20 (m, 2H), 6.85–7.20 (m, 6H), 7.22–7.36 (m, 6H), 7.40–7.60 (m, 2H), 8.00–8.20 (m, 1H); 13 C

NMR (100 MHz, CDCl₃) δ 29.1, 29.6, 39.0, 39.1, 39.4, 41.5, 41.8, 42.0, 52.4, 52.7, 53.5, 53.8, 54.2, 54.4, 54.6, 54.9, 55.2, 55.4, 55.8, 56.1, 56.5, 57.0, 57.1, 58.2, 68.3, 68.4, 102.8, 103.0, 103.2, 104.2, 104.5, 111.3, 113.0, 115.2, 116.8, 116.9, 117.8, 117.9, 118.0, 119.6, 119.9, 120.5, 120.6, 123.1, 124.3, 125.3, 126.1, 126.2, 126.9, 128.5, 129.2, 129.4, 130.9, 131.1, 132.4, 137.5, 138.6, 153.8, 153.9, 158.9, 159.1, 162.3, 162.7, 166.5, 166.6, 166.7, 167.0, 174.0, 174.1, 174.5, 174.6, 175.0, 175.2, 207.1; HRMS-FAB (M+Na⁺) calcd for C₃₄H₃₆Na-N₆O₆S 647.2594, found 647.2580.

4.3.10.30. Carboxylic acid 15. To a solution of trans-4-(aminomethyl)cyclohexane carboxylic acid (500 mg, 3.20 mmol) in THF/H₂O (2:1, 15 mL) were added CbzCl (473 mg, 3.30 mmol) and 2 N NaOH (2 mL). The reaction mixture was stirred at room temperature for 2 h and then partitioned between EtOAc (300 mL) and 1 N HCl (250 mL). The aqueous layer was extracted once with EtOAc (150 mL). The combined organic layers were washed with brine (200 mL) and dried over MgSO₄. The solvent was removed to give carboxylic acid 15 (900 mg, 3.10 mmol, 97%) without further purification: ${}^{1}H$ NMR (300 MHz, CDCl₃) δ 0.80-1.10 (m, 2H), 1.30-1.60 (m, 3H), 1.70-1.90 (d, J = 8.4 Hz, 2H), 1.95–2.15 (d, J = 8.4 Hz, 2H), 2.15– 2.40 (m, 1H), 2.90-3.20 (m, 2H), 4.80-5.25 (m, 3H), 6.05–6.20 (br s, 1H), 7.28–7.50 (m, 5H), 10.00–11.80 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.2, 29.5, 37.6, 43.0, 47.0, 66.8, 95.7, 128.2, 128.5, 136.5, 156.7, 181.6; HRMS-FAB (M+Na⁺) calcd for C₁₅H₁₉NaNO₄ 314.1368, found 314.1350.

4.3.10.31. Carbamate **16.** Compound **15** (700 mg, 2.5 mmol) was dissolved in toluene (25 mL). To this were added DIEA (660 μL, 488 mg, 3.75 mmol) and $(PhO)_2PON_3$ $(810 \mu L,$ $1.0 \, \mathrm{g}$ 3.75 mmol). The reaction mixture was heated at 85 °C under nitrogen for 20 h and then cooled to room temperature. To a separated flask containing a solution of potassium tert-butoxide (560 mg, 5.0 mmol) in THF (30 mL) at 0 °C the isocyanate solution was added slowly. The reaction was allowed to warm to room temperature over 30 min and quenched with water (30 mL). The THF was removed by rotary evaporation, and the resulting material was partitioned between EtOAc (250 mL) and 1 N HCl (250 mL). The organic layer was washed with 1 N HCl (150 mL), saturated NaHCO₃ (200 mL), and brine (200 mL). It was dried over MgSO4 and the solvent was removed by rotary evaporation. The crude material was purified by flash chromatography (EtOAc/hexanes 1:2-1:1) to give compound **16** (825 mg, 2.27 mmol, 91%): 1 H NMR (300 MHz, CDCl₃) δ 0.90–1.20 (dd, J = 9.3, 18.3 Hz, 4H), 1.45 (s, 9H), 1.70–1.90 (d, J = 8.1 Hz, 2H), 1.90-2.10 (d, J = 7.5 Hz, 2H), 2.90-3.10 (t, J = 5.2 Hz, 2H, 3.38 (br s, 1H), 4.42 (br s, 1H), 4.92(br s, 1H), 5.10 (s, 2H), 7.27–7.48 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 28.5, 29.3, 32.9, 37.4, 46.8, 49.7, 66.7, 79.1, 128.2, 128.6, 136.6, 155.2, 156.5; HRMS-FAB (M+Na⁺) calcd for C₂₀H₃₀NaN₂O₄ 385.2103, found 385.2111.

4.3.10.32. Aminoalcohol 18a. Compound **18a** was synthesized starting from **10a** and **17a** using general method F (356 mg, 1.3 mmol, 87%): 1 H NMR (300 MHz, CDCl₃) δ 1.41 (s, 9H), 1.42–1.57 (m, 4H), 2.55–2.75 (m, 2H), 2.95–3.15 (m, 4H), 3.16–3.25 (m, 1H), 3.55–3.61 (dd, J = 3.0, 12.0 Hz, 1H), 3.62–3.72 (dd, J = 3.0, 9.0 Hz, 1H), 3.90–4.10 (m, 2H), 4.15–4.25 (m, 1H), 4.90–5.10 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 27.3, 28.1, 28.8, 40.5, 48.0, 50.7, 66.9, 72.3, 74.4, 76.4, 79.6, 156.5; HRMS-FAB (M+H⁺) calcd for C₁₃H₂₆N₂O₄ 275.1971, found 275.1976.

4.3.10.33. Aminoalcohol 18b. Compound **18b** was synthesized starting from **10a** and **17b** using general method F (366 mg, 1.27 mmol, 85%): 1 H NMR (300 MHz, CDCl₃) δ 1.25–1.60 (m, 15H), 2.55–2.75 (t, J = 7.5 Hz, 2H), 2.95–3.15 (dd, J = 6.0, 15.0 Hz, 2H), 3.15–3.30 (m, 3H), 3.50–3.65 (dd, J = 3.0, 9.0 Hz, 1H), 3.66–3.75 (dd, J = 3.0, 9.0 Hz, 1H), 3.90–4.10 (m, 2H), 4.12–4.28 (m, 1H), 4.65–4.90 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 24.7, 28.2, 29.6, 30.2, 40.7, 48.3, 67.0, 72.3, 74.4, 76.5, 79.6, 156.5.; HRMS-FAB (M+H⁺) calcd for C₁₄H₂₈N₂O₄ 288.2049, found 288.2047.

4.3.10.34. Aminoalcohol 18c. Compound **18c** was synthesized starting from **10a** and **17c** using general method F (407 mg, 1.35 mmol, 90%): ¹H NMR (300 MHz, CDCl₃) δ 1.25–1.40 (m, 4H), 141–1.60 (m, 13H), 2.10–2.25 (t, J=7.5 Hz, 2H), 3.00–3.15 (dd, J=6.0, 15.0 Hz, 2H), 3.15–3.35 (m, 3H), 3.55–3.65 (dd, J=3.0, 9.0 Hz, 1H), 3.66–3.75 (dd, J=3.0, 9.0 Hz, 1H), 3.95–4.15 (m, 2H), 4.20–4.32 (m, 1H), 4.55–4.72 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 26.8, 27.1, 28.8, 29.7, 30.2, 40.8, 48.3, 50.8, 66.9, 72.0, 74.4, 76.3, 79.6, 156.6; HRMS-FAB (M+Na⁺) calcd for C₁₅H₃₀Na-N₂O₄ 325.2103, found 325.2109.

4.3.10.35. Aminoalcohol 18d. Compound **18d** was synthesized starting from **10a** and **17d** using general method F (425 mg, 1.35 mmol, 90%): 1 H NMR (400 MHz, CDCl₃) δ 1.25–1.40 (m, 7H), 1.41–1.60 (m, 14H), 2.55–2.70 (t, J = 7.0 Hz, 2H), 3.05–3.13 (dd, J = 6.0, 15.0 Hz, 2H), 3.14–3.22 (m, 1H), 3.50–3.60 (dd, J = 4.0, 8.0 Hz, 1H), 3.65–3.75 (dd, J = 4.0, 8.0 Hz, 1H), 3.95–4.02 (dd, J = 6.0, 10.0 Hz, 1H), 4.05–4.12 (dd, J = 6.0, 10.0 Hz, 1H), 4.15–4.22 (m, 1H), 4.45–4.65 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 26.6, 27.1, 28.4, 29.1, 30.0, 30.1, 40.5, 48.3, 66.9, 72.5, 74.1, 77.3, 79.1, 156.0; HRMS-FAB (M+Na⁺) calcd for $C_{16}H_{32}$ NaN₂O₄ 339.2260, found 339.2263.

4.3.10.36. Aminoalcohol 18e. Compound **18e** was synthesized starting from **10a** and **17e** using general method F (390 mg, 1.27 mmol, 85%): 1 H NMR (300 MHz, CD₃OD) δ 1.53 (s, 9H), 3.10–3.20 (m, 1H), 3.50–3.70 (m, 2H), 3.70–3.80 (d, J = 3.0 Hz, 2H) 3.95–4.05 (m, 2H), 4.15–4.25 (m, 1H), 7.20–7.30 (d, J = 9.0 Hz, 2H), 7.30–7.45 (d, J = 9.0 Hz, 2H); 13 C NMR (75 MHz, CD₃OD) δ 27.7, 51.3, 65.7, 71.9, 74.1, 76.0, 79.8, 118.8, 129.1, 133.7, 138.7, 154.3; HRMS-FAB (M+H⁺) calcd for C₁₆H₂₄N₂O₄ 331.1638, found 331.1631.

4.3.10.37. Aminoalcohol 18f. Compound **18f** was synthesized starting from **10a** and **17f** using general method F (375 mg, 1.20 mmol, 80%): 1 H NMR (300 MHz, CD₃OD) δ 0.95–1.30 (m, 4H), 1.45 (s, 9H), 2.30–2.50 (m, 4H), 2.40–2.60 (m, 2H), 3.10–3.20 (m, 1H), 3.20–3.30 (m, 1H), 3.50–3.70 (m, 2H), 3.90–4.10 (m, 2H), 4.10–4.20 (m, 1H); 13 C NMR (75 MHz, CD₃OD) δ 27.8, 30.1, 32.7, 36.9, 50.0, 54.2, 66.9, 71.8, 74.1, 75.7, 78.8, 156.8; HRMS-FAB (M+Na⁺) calcd for C₁₆H₃₀N₂O₄ 337.2103, found 337.2125.

4.3.10.38. Aminoalcohol 18g. Compound **18g** was synthesized starting from **10b** and **17c** using general method F (480 mg, 1.38 mmol, 92%) as a mixture of isomers: 1 H NMR (300 MHz, CD₃OD) δ 1.20–1.40 (m, 4H), 1.42–1.60 (s, 14H), 2.55–2.70 (m, 2H), 2.90–3.20 (m, 4H), 3.21–3.41 (m, 2H), 3.42–3.60 (m, 2H), 4.30–4.50 (m, 1H), 4.55–4.75 (br s, 1H); 13 C NMR (75 MHz, CD₃OD) δ 26.7, 26.8, 27.0, 28.8, 29.9, 30.22, 30.24, 30.3, 40.7, 40.8, 47.6, 48.0, 53.9, 56.5, 57.9, 59.0, 60.1, 62.4, 68.3, 72.3, 77.7, 79.7, 156.6; HRMS-FAB (M+Na⁺) calcd for C₁₅H₃₀N₂O₅S 373.1773, found 373.1782.

4.3.10.39. TMS ether 19a. Compound 18a (300 mg, 1.1 mmol) was dissolved in CH₂Cl₂ (20 mL). To this solution TMSCl (900 µL, 545 mg, 5.0 mmol) and DIEA (880 µL, 650 mg, 5.0 mmol) were added. The reaction mixture was stirred at room temperature for 15 min and then partitioned between CH₂Cl₂ (200 mL) and H₂O (200 mL). The organic layer was washed twice with H₂O (200 mL) and brine (200 mL), and the solvent was removed by rotary evaporation to yield the N,O-bis-TMS-protected aminoalcohol (460 mg, 1.1 mmol, 100%): ${}^{1}H$ NMR (300 MHz, CDCl₃) δ 0.14 (s, 9H), 0.23 (s, 9H), 1.35–1.55 (m, 13H), 2.55–2.70 (m, 2H), 3.00-3.20 (m, 3H), 3.50-3.60 (m, 2H), 3.90-4.00 (dd, J = 4.0, 8.0 Hz, 1H), 4.00–4.08 (dd, J = 4.0, 8.0 Hz, 1H), 4.10–4.15 (m, 1H). The N,O-bis-TMS-protected aminoalcohol was dissolved in dry MeOH (20 mL) and the reaction mixture was stirred at room temperature overnight. The solvent was removed by rotary evaporation, and the crude material was purified by flash chromatography (5% MeOH/CH₂Cl₂) to yield TMS ether **19a** (385 mg, 1.1 mmol, 100%): ¹H NMR (400 MHz, CDCl₃) δ 0.14 (s, 9H), 1.43 (s, 9H), 1.50– 1.60 (m, 4H), 2.55–2.75 (m, 2H), 3.00–3.20 (m, 3H), 3.50-3.65 (m, 2H), 3.90-4.00 (dd, J = 4.0, 8.0 Hz, 1H), 4.00-4.08 (dd, J = 4.0, 8.0 Hz, 1H), 4.10-4.15 (m, 1H), 4.70–4.90 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 0.1, 0.2, 27.6, 27.9, 28.4, 40.4, 47.9, 66.7, 72.4, 74.4, 79.1, 156.0; HRMS-FAB (M+Na⁺) calcd for $C_{16}H_{34}Na$ -N₂O₄Si 369.2186, found 369.2175.

4.3.10.40. TMS ether 19b. Compound 19b was synthesized starting from 18b using general method G (395 mg, 1.1 mmol, 100%): 1 H NMR (300 MHz, CDCl₃) δ 0.14 (s, 9H), 1.25–1.65 (m, 15H), 2.50–2.80 (td, J = 3.0, 6.6 Hz, 2H), 3.00–3.25 (m, 3H), 3.50–3.70 (td, J = 3.0, 9.0 Hz, 2H), 3.90–4.10 (m, 2H), 4.10–4.15 (m, 1H), 4.45–4.60 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 0.1, 0.2, 24.5, 28.5, 29.9, 50.0, 40.5, 48.2, 66.7, 72.3, 74.4, 76.8, 79.1, 156.0; HRMS-ESI (M+H⁺) calcd for C₁₇H₃₇N₂O₄Si 353.2523, found 353.2540.

4.3.10.41. TMS ether 19c. Compound **19c** was synthesized starting from **18c** using general method G (410 mg, 1.1 mmol, 100%): 1 H NMR (300 MHz, CDCl₃) δ 0.12 (s, 9H), 1.20–1.40 (m, 5H), 1.41–1.60 (m, 12H), 2.50–2.70 (td, J = 3.0, 6.3 Hz, 2H), 3.00–3.20 (m, 3H), 3.50–3.70 (td, J = 3.0, 9.0 Hz, 2H), 3.90–4.10 (m, 2H), 4.10–4.15 (m, 1H), 4.50–4.65 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 0.5, 27.0, 27.3, 28.8, 30.4, 30.5, 40.9, 48.6, 67.1, 72.7, 74.7, 79.4, 156.4; HRMS-ESI (M+H⁺) calcd for $C_{18}H_{39}N_2O_4Si$ 375.2679, found 375.2666.

4.3.10.42. TMS ether 19d. Compound **19d** was synthesized starting from **18d** using general method G (425 mg, 1.1 mmol, 100%): 1 H NMR (300 MHz, CDCl₃) δ 0.14 (s, 9H), 1.20–1.40 (m, 7H), 1.41–1.60 (m, 12H), 2.50–2.70 (td, J = 3.0, 9.0 Hz, 2H), 3.00–3.20 (m, 3H), 3.50–3.70 (td, J = 3.0, 9.0 Hz, 2H), 3.90–4.08 (m, 2H), 4.10–4.15 (m, 1H), 4.45–4.65 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 0.5, 27.1, 27.6, 28.8, 29.6, 30.4, 30.5, 41.0, 48.7, 67.1, 72.7, 74.8, 77.2, 79.4, 156.4; HRMS-FAB (M+H⁺) calcd for $C_{19}H_{40}NaN_2O_4Si$ 411.2655, found 411.2671.

4.3.10.43. TMS ether 19e. Compound 19e was synthesized starting from 18e using general method G (415 mg, 1.1 mmol, 100%): 1 H NMR (400 MHz, CDCl₃) δ 0.13 (s, 9H), 1.53 (s, 9H), 3.15–3.25 (dd, J = 4.0, 4.4 Hz, 1H), 3.50–3.70 (m, 2H), 3.77 (s, 2H), 3.90–4.08 (m, 2H), 4.15–4.25 (m, 1H), 6.58 (s, 1H), 7.20–7.30 (d, J = 8.0 Hz, 2H), 7.30–7.40 (d, J = 8.0 Hz, 2H); 13 C NMR (100 MHz, CDCl₃) δ 0.1, 0.2, 28.4, 51.7, 66.0, 72.4, 74.4, 77.0, 80.5, 118.6, 128.7, 134.6, 137.4, 152.8; HRMS-FAB (M+H⁺) calcd for $C_{19}H_{33}N_2O_4Si_381.2210$, found 381.2219.

4.3.10.44. TMS ether 19f. Compound 19f was synthesized starting from 18f using general method G (415 mg, 1.1 mmol, 98%): ¹H NMR (300 MHz, CDCl₃) δ 0.13 (s, 9H), 0.90–1.20 (m, 5H), 1.25–1.40 (m, 1H), 1.44 (s, 9H), 1.70–1.90 (m, 2H), 1.90–2.10 (m, 2H), 2.40–2.50 (d, J = 6.0 Hz, 2H), 3.00–3.15 (m, 1H), 3.30–3.45 (br s, 1H), 3.50–3.70 (ddd, J = 3.0, 9.0, 18.0 Hz, 2H), 3.90–3.98 (dd, J = 3.0, 9.0, 1H), 3.99–4.08 (dd, J = 3.0, 9.0, 1H), 4.05–4.15 (m, 1H), 4.30–4.50 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 0.5, 28.8, 30.4, 33.5, 37.9, 50.3, 54.8, 67.1, 72.9, 74.7, 77.2, 79.5, 155.6; HRMS-ESI (M+H⁺) calcd for C₁₉H₃₉N₂O₄Si 387.2679, found 387.2690.

4.3.10.45. TMS ether 19g. Compound **18g** (140 mg, 0.29 mmol) was dissolved in CH_2Cl_2 (15 mL). To this solution TMSCl (180 μL, 153 mg, 1.4 mmol) and DIEA (250 μL, 182 mg, 1.40 mmol) were added. The reaction mixture was stirred at room temperature for 45 min, then the solution was partitioned between CH_2Cl_2 (75 mL) and H_2O (75 mL). The organic layer was washed twice with H_2O (75 mL) and brine (75 mL), the solvent was removed by rotary evaporation, and the crude product was purified by flash chromatography (5% MeOH/ CH_2Cl_2) to yield TMS ether **19g** as a mixture of isomers (118 mg, 0.28 mmol, 97%): ¹H NMR (400 MHz, $CDCl_3$) δ 0.10–0.20 (m, 9H), 1.25–1.40 (m,

4H), 1.41–1.55 (m, 13H), 2.50–2.65 (dd, J = 4.0, 8.0 Hz, 2H), 2.85–3.35 (m, 5H), 3.36–3.55 (m, 2H), 4.25–4.70 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ –0.1, 0.0, 26.5, 26.6, 26.8, 26.9, 28.4, 30.0, 30.1, 40.5, 47.2, 48.0, 54.1, 55.6, 58.0, 59.9, 60.1, 62.7, 70.0, 72.6, 79.1, 156.0; HRMS-FAB (M+Na⁺) calcd for $C_{18}H_{38}NaN_2O_5SSi$ 445.2168, found 445.2145.

4.3.10.46. Ketone 20a. Compound 20a was synthesized starting from 19a using general method H (41 mg, 49 μ mol, 81%): ¹H NMR (300 MHz, CDCl₃) δ 1.10–1.37 (m, 4H), 1.38–1.52 (m, 10H), 1.53–1.72 (m, 9H), 2.50-3.30 (m, 8H), 3.35-3.60 (m, 1H), 3.85-4.25 (m, 4H), 4.30-4.60 (m, 1H), 4.75-5.04 (m, 2H), 5.05-5.20 (m, 2H), 5.20–5.70 (m, 1H), 6.25–6.75 (m, 1H), 6.95-7.17 (m, 2H), 7.18-7.26 (m, 3H), 7.28-7.40 (m, 6H), 7.41–7.51 (m, 1H), 7.55–7.70 (m, 1H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 26.5, 26.7, 26.8, 27.0, 28.2, 28.5, 28.6, 28.8, 39.5, 39.7, 39.9, 49.9, 50.1, 50.4, 55.4, 55.7, 62.1, 62.3, 67.3, 67.4, 67.6, 68.0, 68.2, 70.0, 79.7, 84.1, 84.3, 84.4, 115.4, 115.8, 119.4, 123.2, 124.7, 124.8, 124.9, 125.0, 125.2, 127.6, 127.7, 128.5, 128.6, 128.7, 128.8, 128.9, 129.0, 129.8, 129.9, 130.2, 130.5, 135.6, 135.7, 135.8, 135.9, 136.1, 136.4, 149.9, 150.0, 156.2, 156.5, 170.0, 170.1, 170.3, 170.4, 170.6, 208.1, 208.2; HRMS-ESI (M+Na⁺) calcd for C₄₆H₅₇NaN₅O₁₀ 862.4003, found 862.4025.

4.3.10.47. Ketone 20b. Compound 20b was synthesized starting from 19b using general method H (47 mg, 55 μmol, 62%): 1 H NMR (300 MHz, CDCl₃) δ 1.00– 1.30 (m, 3H), 1.31–1.51 (m, 11H), 1.52–1.70 (m, 9H), 2.50–3.30 (m, 8H), 3.33–3.50 (m, 1H), 3.85–4.06 (m, 2H), 4.07–4.30 (m, 2H), 4.35–4.60 (m, 1H), 4.62–5.04 (m, 2H), 5.05-5.15 (m, 2H), 5.20-5.70 (m, 1H), 6.25-6.80 (m, 1H), 6.95–7.17 (m, 2H), 7.19–7.27 (m, 3H), 7.29–7.33 (m, 6H), 7.34–7.51 (m, 1H), 7.50–7.70 (m, 1H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 23.7, 28.5, 28.6, 28.8, 29.1, 29.2, 29.3, 29.9, 39.6, 40.5, 50.3, 50.4, 50.5, 62.1, 62.2, 67.4, 67.5, 67.7, 68.1, 70.0, 77.7, 84.1, 84.3, 115.8, 119.4, 119.5, 123.1, 123.2, 124.7, 124.8, 124.9, 125.1, 125.2, 127.5, 127.6, 127.7, 128.5, 128.6, 128.7, 129.0, 129.8, 129.9, 130.2, 135.7, 135.9, 136.5, 170.3, 170.6, 208.1, 208.2; HRMS-ESI (M+Na⁺) calcd for C₄₇H₅₉NaN₅O₁₀ 876.4160, found 876.4176.

4.3.10.48. Ketone 20c. Compound 20c was synthesized starting from 19c using general method H (51 mg, 59 μ mol, 66%): ¹H NMR (300 MHz, CDCl₃) δ 1.00-1.35 (m, 7H), 1.36-1.52 (m, 9H), 1.53-1.70 (m, 9H), 2.50-3.30 (m, 8H), 3.30-3.50 (m, 1H), 3.85-4.25 (m, 4H), 4.35–4.65 (m, 1H), 4.66–5.02 (m, 2H), 5.03– 5.15 (m, 2H), 5.30–5.70 (m, 1H), 6.40–6.80 (m, 1H), 6.97-7.17 (m, 2H), 7.18-7.27 (m, 4H), 7.29-7.40 (m, 6H), 7.41–7.49 (m, 1H), 7.50–7.65 (m, 1H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 26.1, 26.5, 28.3, 28.6, 28.9, 29.4, 29.6, 30.1, 39.6, 39.9, 40.7, 50.3, 50.4, 50.5, 55.3, 62.2, 62.3, 67.4, 67.5, 68.1, 68.2, 70.0, 77.7, 79.5, 84.2, 84.3, 115.5, 115.6, 115.7, 119.4, 123.1, 123.2, 124.7, 124.8, 125.0, 125.1, 127.5, 127.6, 127.7, 128.5, 128.6, 128.9, 129.8, 129.9, 130.2, 130.5, 130.6, 135.7, 135.8, 136.0, 136.2, 136.5, 149.9, 156.2, 156.5, 170.0, 170.1, 170.3, 170.4, 170.5, 170.6, 208.0, 208.1, 208.2, 208.3; HRMS-FAB (M+Na $^+$) calcd for $C_{48}H_{61}NaN_5O_{10}$ 890.4316, found 890.4334.

4.3.10.49. Ketone 20d. Compound 20d was synthesized starting from 19d using general method H (50 mg, 57 mmol, 65%): ¹H NMR (400 MHz, CDCl₃) δ 1.00–1.35 (m, 10H), 1.40–1.55 (m, 12H), 1.56–1.70 (m, 9H), 2.50–2.85 (m, 2H), 2.86–3.30 (m, 7H), 3.40– 3.55 (m, 1H), 3.85–4.05 (m, 2H), 4.06–4.30 (m, 2H), 4.35-4.60 (m, 1H), 4.62-4.80 (m, 1H), 4.81-5.05 (m, 1H), 5.05–5.20 (m, 2H), 5.25–5.65 (m, 1H), 6.30–6.80 (m, 1H), 6.96-7.27 (m, 7H), 7.30-7.42 (m, 6H), 7.43-7.54 (m, 1H), 7.55–7.70 (m, 1H), 8.05–8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 26.5, 28.1, 28.4, 28.6, 29.1, 29.8, 39.2, 39.5, 40.4, 50.0, 50.1, 54.9, 61.7, 61.8, 61.9, 66.9, 67.1, 67.7, 67.8, 69.5, 79.0, 83.6, 83.7, 115.3, 115.5, 119.0, 122.7, 122.8, 124.2, 124.3, 124.6, 124.7, 127.0, 127.1, 127.2, 128.1, 128.2, 128.5, 128.6, 129.3, 129.4, 129.7, 135.2, 135.3, 135.5, 135.7, 136.0, 149.4, 155.8, 156.0, 169.5, 169.8, 169.9, 170.0, 207.6, 207.7; HRMS-FAB (M+Na⁺) calcd for C₄₉H₆₃Na-N₅O₁₀ 904.4473, found 904.4450.

4.3.10.50. Ketone 20e. Compound 20e was synthesized starting from 19e using general method H (40 mg, 46 μ mol, 52%): ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.55 (m, 9H), 1.56-1.70 (m, 9H), 2.55-3.10 (m, 2H), 3.11-3.27 (m, 2H), 3.30-3.50 (m, 1H), 3.65-3.5 (m, 3H), 4.05-4.20 (m, 1H), 4.25-4.65 (m, 2H), 4.90-5.25 (m, 3H), 5.25–5.65 (m, 1H), 6.40–6.95 (m, 3H), 7.00-7.08 (m, 1H), 7.09-7.20 (m, 2H), 7.21-7.30 (m, 3H), 7.31–7.42 (m, 7H), 7.43–7.70 (m, 2H), 8.00–8.15 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 14.6, 28.2, 28.6, 28.7, 29.4, 50.4, 50.7, 53.1, 53.2, 61.1, 61.3, 61.6, 67.5, 67.6, 67.8, 68.0, 70.0, 77.7, 81.2, 84.1, 84.2, 84.3, 115.6, 115.7, 115.8, 119.2, 119.3, 119.5, 123.1, 123.2, 124.7, 124.8, 124.9, 125.1, 127.6, 127.7, 128.5, 128.6, 128.7, 128.9, 129.0, 129.1, 129.2, 129.6, 129.8, 130.0, 130.1, 130.2, 131.7, 135.4, 135.8, 136.1, 136.5, 138.8, 139.0, 149.9, 153.0, 156.3, 170.3, 170.5, 170.6, 170.7, 170.8, 208.3, 208.4; HRMS-ESI (M+Na⁺) calcd for C₄₉H₅₅NaN₅O₁₀ 896.3847, found 896.3862.

4.3.10.51. Ketone 20f. Compound 20f was synthesized starting from 19f using general method H (43 mg, 49 μmol, 56%): 1 H NMR (300 MHz, CDCl₃) δ 0.70– 1.10 (m, 5H), 1.11–1.31 (m, 1H), 1.35–1.55 (m, 10H), 1.56–1.70 (m, 9H), 1.80–2.00 (m, 2H), 2.45–3.25 (m, 6H), 3.26-3.55 (m, 2H), 3.90-4.28 (m, 4H), 4.29-4.40 (m, 1H), 4.41–4.55 (m, 1H), 4.75–5.02 (m, 1H), 5.03– 5.13 (m, 2H), 5.20–5.60 (m, 1H), 6.20–6.70 (m, 1H), 6.95-7.16 (m, 2H), 7.17-7.28 (m, 4H), 7.30-7.42 (m, 6H), 7.43–7.53 (m, 1H), 7.55–7.74 (m, 1H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.5, 28.6, 28.8, 29.1, 29.2, 29.4, 33.0, 33.1, 37.8, 39.5, 39.9, 49.8, 50.5, 52.2, 56.1, 63.1, 67.1, 67.3, 67.6, 67.8, 67.9, 70.0, 70.1, 77.7, 79.6, 84.1, 84.3, 115.5, 115.7, 115.8, 119.5, 123.2, 123.3, 124.7, 125.0, 125.2, 127.5, 127.6, 127.7, 128.5, 128.7, 129.0, 129.8, 129.9, 130.2, 130.5, 135.7, 135.9, 136.2, 136.4, 149.9, 155.5, 156.2, 170.3, 170.4, 170.6, 170.7, 170.8, 207.9, 208.0, 208.1, 208.3; HRMS-ESI $(M+Na^+)$ calcd for $C_{49}H_{61}NaN_5O_{10}$ 902.4316, found 902.4301.

4.3.10.52. Ketone 20g. Compound 20g was synthesized starting from 19g using general method H (41 mg, 45 μmol, 50%): ¹H NMR (400 MHz, CDCl₃) δ 1.00–1.34 (m, 6H), 1.35–1.58 (m, 9H), 1.59–1.85 (m, 9H), 2.55–3.03 (m, 3H), 3.04–3.40 (m, 4H), 3.41–3.95 (m, 3H), 4.10–4.30 (m, 1H), 4.35–4.62 (m, 1H), 4.63-4.90 (m, 1H), 4.95-5.15 (m, 2H), 5.20-5.89 (m, 1H), 6.30–6.80 (m, 1H), 6.90–7.11 (m, 2H), 7.12-7.28 (m, 4H), 7.30-7.45 (m, 5H), 7.46-7.51 (m, 1H), 7.52–7.77 (m, 1H), 8.00–8.20 (m, 1H); NMR (100 MHz, CDCl₃) δ 14.6, 21.5, 26.2, 26.5, 28.5, 28.6, 28.8, 29.1, 29.3, 30.1, 39.1, 39.8, 40.7, 50.4, 52.2, 52.3, 52.8, 55.3, 57.6, 60.8, 64.2, 64.3, 67.6, 67.8, 79.6, 84.3, 84.4, 115.3, 115.8, 119.5, 123.2, 124.7, 124.9, 125.1, 125.2, 127.7, 128.0, 128.4, 128.5, 128.7, 128.8, 129.0, 129.1, 129.7, 129.8, 129.9, 130.6, 136.4, 149.9, 156.4, 170.9, 171.3, 194.3, 194.4; HRMS-FAB (M+Na⁺) calcd for C₄₈H₆₁NaN₅O₁₁S 938.3986, found 938.3966.

4.3.10.53. Inhibitor 5a. Compound 5a was synthesized starting from 20a using general method I (31 mg, 48 μmol, 80%): 1 H NMR (300 MHz, CD₃OD) δ 1.30– 1.70 (m, 4H), 2.70–2.95 (m, 3H), 2.96–3.25 (m, 3H), 3.70-4.05 (m, 3H), 4.10-4.55 (m, 3H), 5.00-5.20 (m, 2H), 6.90–7.50 (m, 14H), 8.00–8.50 (m, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 24.1, 24.2, 26.0, 26.2, 27.9, 28.1, 28.3, 37.8, 38.1, 38.6, 39.2, 39.3, 50.3, 50.5, 50.8, 56.4, 56.5, 61.7, 61.9, 62.0, 66.6, 66.9, 67.2, 67.9, 69.5, 69.6, 109.6, 111.4, 115.3, 118.3, 118.8, 119.0, 121.4, 122.7, 123.7, 123.8, 124.4, 127.0, 127.2, 127.7, 127.8, 127.9, 128.0, 128.5, 128.6, 129.5, 129.6, 129.7, 129.8, 136.6, 136.7, 136.8, 136.9, 137.1, 170.6, 170.7, 172.8, 173.1, 209.3. 209.8: $HRMS-ESI (M+H^+)$ calcd C₃₆H₄₂N₅O₆ 640.3135, found 640.3146.

4.3.10.54. Inhibitor 5b. Compound 5b was synthesized starting from 20b using general method I (33 mg, 50 mmol, 77%): ¹H NMR (300 MHz, CD₃OD) δ 1.00– 1.40 (m, 4H), 1.41–1.75 (m, 2H), 2.35–2.64 (m, 1H), 2.65-3.25 (m, 7H), 3.65-4.07 (m, 3H), 4.08-4.32 (m, 2H), 4.33-4.54 (m, 1H), 4.65-5.00 (m, 1H), 5.00-5.15 (m, 2H), 6.90–7.15 (m, 3H), 7.16–7.45 (m, 10H), 7.46– 7.72 (m, 2H); 13 C NMR (75 MHz, CD₃OD) δ 22.8, 22.9, 26.9, 27.0, 27.9, 28.5, 28.6, 37.9, 38.3, 38.6, 39.3, 39.4, 50.3, 50.4, 50.6, 50.8, 56.4, 56.6, 61.9, 66.7, 66.8, 67.4, 67.9, 69.6, 109.5, 109.6, 111.3, 115.3, 118.3, 118.8, 119.0, 121.4, 122.7, 123.7, 123.9, 124.5, 126.9, 127.1, 127.7, 127.8, 127.9, 128.0, 128.1, 128.5, 128.6, 129.5, 129.6, 129.7, 129.8, 130.8, 136.7, 136.8, 136.9, 137.1, 157.1, 170.5, 172.8, 172.9, 173.0, 209.4, 209.7; HRMS-FAB (M+Na⁺) calcd for C₃₇H₄₃NaN₅O₆ 676.3111, found 676.3131.

4.3.10.55. Inhibitor **5c.** Compound **5c** was synthesized starting from **20c** using general method I (36 mg, 54 mmol, 80%): 1 H NMR (300 MHz, CDCl₃) δ 0.90–1.35 (m, 6H), 1.40–1.65 (m, 2H), 2.35–3.28 (m, 8H), 3.30–3.60 (m, 1H), 3.70–4.02 (m, 2H), 4.03–4.29 (m, 2H), 4.32–4.65 (m, 1H), 4.70–5.20 (m, 3H), 5.60–6.20 (m, 1H), 6.85–7.22 (m, 10H), 7.30–7.40 (m, 2H), 7.41–7.80 (m, 6H), 7.90–9.00 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 25.2, 25.4, 26.7, 26.9, 28.0, 28.4, 28.7, 30.1,

39.0, 40.1, 49.7, 50.1, 50.6, 51.1, 56.2, 62.1, 62.3, 67.2, 67.6, 68.3, 69.9, 70.1, 109.7, 109.8, 110.5, 111.9, 114.3, 118.2, 118.6, 120.1, 122.0, 122.6, 124.0, 124.2, 125.2, 127.7, 127.8, 127.9, 128.3, 128.4, 128.7, 129.0, 129.1, 129.7, 130.0, 135.5, 136.3, 136.4, 136.5, 136.6, 153.1, 156.6, 156.7, 156.8, 160.9, 161.4, 161.9, 162.4, 170.5, 170.8, 171.2, 172.1, 208.1, 208.2; HRMS-FAB (M+Na⁺) calcd for $C_{38}H_{45}NaN_5O_6$ 690.3268, found 690.3287.

4.3.10.56. Inhibitor 5d. Compound 5d was synthesized starting from 20d using general method I (36 mg, 54 mmol, 81%): 1 H NMR (300 MHz, CDCl₃) δ 1.00– 1.35 (m, 8H), 1.36-2.24 (m, 2H), 2.50-3.30 (m, 8H), 3.35–3.55 (m, 1H), 3.80–4.02 (m, 2H), 4.03–4.25 (m, 2H), 4.30-4.70 (m, 1H), 4.70-4.95 (m, 1H), 4.96-5.20 (m, 2H), 5.70-6.20 (m, 1H), 6.85-7.25 (m, 9H), 7.30-7.90 (m, 7H), 8.00-8.80 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 25.3, 25.5, 25.7, 26.8, 26.9, 27.2, 27.9, 28.3, 28.6, 28.8, 30.1, 38.8, 39.5, 40.3, 50.1, 50.4, 50.5, 50.6, 56.2, 56.6, 62.2, 62.5, 67.2, 67.6, 68.3, 69.9, 70.2, 109.1, 109.7, 111.9, 114.3, 115.9, 118.1, 118.6, 118.8, 120.1, 121.3, 122.6, 123.9, 124.1, 124.4, 125.2, 127.6, 127.8, 127.9, 128.3, 128.4, 128.7, 129.0, 129.1, 129.7, 130.0, 135.5, 136.3, 136.4, 136.6, 151.5, 156.7, 156.8, 161.4, 161.9, 170.2, 170.6, 170.9, 171.3, 172.3, 208.0, 208.2; HRMS-FAB (M+Na⁺) calcd for C₃₉H₄₇NaN₅O₆ 704.3424, found 704.3435.

4.3.10.57. Inhibitor 5e. Compound **5e** was synthesized starting from 20e using general method I (37 mg, 55 mmol, 75%): ¹H NMR (300 MHz, CD₃OD) δ 2.45– 3.25 (m, 4H), 3.55–4.05 (m, 4H), 4.06–4.55 (m, 4H), 4.56–4.90 (m, 1H), 5.00–5.15 (m, 2H), 6.75–7.43 (m, 18H), 7.44–7.65 (m, 2H), 8.00–8.20 (m, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 27.7, 27.9, 28.4, 37.6, 37.9, 38.2, 47.2, 47.4, 47.7, 50.7, 51.0, 52.4, 55.3, 56.1, 61.6, 61.8, 66.7, 67.4, 67.7, 69.6, 109.6, 111.4, 115.3, 116.2, 118.4, 118.8, 119.1, 121.4, 122.6, 123.1, 123.8, 124.4, 124.7, 126.9, 127.1, 127.2, 127.7, 127.8, 127.9, 128.5, 128.6. 128.7, 128.8, 128.9, 129.0, 129.2, 129.3, 129.4, 129.6, 129.7, 129.8, 130.8, 135.9, 136.5, 136.6, 136.7, 136.9, 137.1, 152.2, 157.1, 170.8, 172.8, 208.8, 208.9; HRMS-FAB $(M+Na^+)$ calcd for $C_{39}H_{39}NaN_5O_6$ 696.2798, found 696.2788.

4.3.10.58. Inhibitor 5f. Compound 5f was synthesized starting from 20f using general method I (42 mg, 62 mmol, 81%): 1 H NMR (300 MHz, CD₃OD) δ 0.70– 1.40 (m, 5H), 1.42-2.15 (m, 4H), 2.80-3.20 (m, 5H), 3.40–3.86 (m, 2H), 3.87–4.05 (m, 2H), 4.10–4.30 (m, 2H), 4.31-4.80 (2H), 5.00-5.15 (m, 2H), 6.90-7.18 (m, 3H), 7.19–7.42 (m, 9H), 7.45–7.70 (m, 2H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CD₃OD) δ 27.5, 27.8, 28.0, 28.3, 30.2, 36.5, 36.7, 36.8, 37.9, 38.2, 38.8, 50.3, 50.5, 50.7, 55.1, 55.3, 55.4, 56.4, 62.3, 62.5, 66.6, 67.3, 67.5, 67.6, 69.6, 109.7, 111.3, 115.3, 118.3, 118.8, 119.1, 121.4, 122.6, 123.7, 124.4, 124.6, 127.0, 127.1, 127.7, 127.8, 127.9, 128.0, 128.5, 128.6, 129.7, 129.8, 129.9, 130.8, 135.9, 136.6, 136.7, 136.9, 137.1, 170.6, 170.8, 172.1, 172.7, 172.9, 209.1, 209.2; HRMS-FAB $(M+Na^{+})$ calcd for $C_{39}H_{45}NaN_{5}O_{6}$ 702.3268, found 702.3285.

4.3.10.59. Inhibitor **5g.** Compound **5g** was synthesized starting from **20g** using general method I (30 mg, 42 mmol, 59%): 1 H NMR (300 MHz, CD₃OD) δ 1.10–1.45 (m, 6H), 1.46–1.78 (m, 2H), 2.68–3.22 (m, 7H), 3.45–3.82 (m, 2H), 4.15–4.40 (m, 1H), 4.41–4.65 (m, 1H), 4.90–5.02 (m, 1H), 5.02–5.15 (m, 2H), 6.90–7.45 (m, 13H), 7.46–7.70 (m, 2H), 8.05–8.30 (m, 1H); 13 C NMR (75 MHz, CD₃OD) δ 25.3, 25.6, 25.7, 25.8, 26.9, 27.1, 27.8, 28.4, 28.5, 28.9, 29.6, 37.4, 37.8, 39.4, 49.4, 52.4, 52.7, 56.1, 56.2, 64.0, 64.2, 66.5, 66.6, 109.4, 111.2, 118.2, 118.7, 121.3, 121.4, 123.6, 126.7, 127.1, 127.5, 127.6, 127.7, 127.8, 128.1, 128.3, 128.5, 129.2, 129.4, 129.5, 136.5, 136.6, 136.7, 136.8, 136.9, 170.9, 172.6, 172.7, 172.9, 195.9, 196.0; HRMS-FAB (M+Na⁺) calcd for C₃₈H₄₅NaN₅O₇S 738.2937, found 738.2962.

4.3.10.60. Fmoc-Trp(Boc)-Tyr-OBn (22). Compound 22 was synthesized starting from 21 using general method A (1.21 g, 1.56 mmol, 97%): ¹H NMR (400 MHz, CDCl₃) δ 1.64 (s, 9H), 2.06 (s, 1H), 2.75–3.00 (m, 2H), 3.00–3.30 (m, 2H), 4.00–4.50 (m, 3H), 4.50–4.70 (d, J = 4.8 Hz, 1H), 4.72–4.85 (br s, 1H), 4.90–5.15 (dd, J = 12.0, 20.0 Hz, 2H), 5.60–5.70 (d, J = 6.0 Hz, 1H), 6.40–6.80 (m, 6H), 7.10–7.30 (m, 5H), 7.30–7.45 (m, 5H), 7.46–7.65 (m, 4H), 7.65–7.85 (m, 2H), 8.00–8.20 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 21.1, 28.2, 37.0, 47.0, 53.6, 54.9, 60.6, 67.3, 67.4, 83.8, 115.2, 115.4, 115.5, 119.0, 120.0, 122.8, 124.6, 124.7, 125.2, 126.7, 127.2, 127.8, 130.2, 130.4, 135.0, 135.5, 141.3, 143.7, 149.6, 155.2, 156.2, 170.8, 170.9; HRMS-FAB (M+Na⁺) calcd for C₄₇H₄₅NaN₃O₈ 802.3104, found 802.3128.

4.3.10.61. H₂N-Trp(Boc)-Tvr-OBn (23). To a solution of dipeptide 22 (5 g, 6.4 mmol) in CH₂Cl₂ (150 mL) was added dry piperidine (50 mL). The reaction mixture was stirred at room temperature for 35 min, then partitioned between CH₂Cl₂ (1 L) and saturated NH₄Cl (1 L). The organic layer was washed with saturated NH₄Cl (750 mL), brine (750 mL), and dried over Na₂CO₃. The solvent was removed by rotary evaporation. The crude material was purified by flash chromatography (EtOAc/hexanes 1:1–9:1) to yield the free amine 23 as a white solid (3.15 g, 5.4 mmol, 84%): ¹H NMR (400 MHz, CDCl₃) δ 1.65 (s, 9H), 2.30–2.40 (dd, J = 10.0, 14.4 Hz, 1H), 2.85–2.95 (dd, J = 8.0, 14.0 Hz, 1H), 2.95-3.05 (dd, J = 3.2, 14.4 Hz, 1H), 3.10-3.20(dd, J = 5.6, 14.0 Hz, 1H), 3.55–3.65 (dd, J = 3.2, 9.6 Hz, 1H), 4.90–5.05 (td, J = 5.6, 14.0 Hz, 1H), 5.10– 5.25 (dd, J = 12.0, 21.2 Hz, 2H), 6.70–6.80 (d, J = 8.4 Hz, 2H), 6.85–6.95 (d, J = 8.4 Hz, 2H), 7.10– 7.25 (m, 2H), 7.25–7.30 (m, 2H), 7.31–7.45 (m, 5H), 7.55-7.60 (d, J = 8.0 Hz, 1H), 7.80-7.90 (d, J = 8.8 Hz, 1H), 7.90–8.10 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 14.2, 28.2, 30.0, 37.6, 52.7, 54.4, 60.5, 67.3, 77.3, 83.7, 115.1, 115.5, 116.1, 119.2, 122.6, 124.0, 124.6, 126.6, 128.5, 128.6, 128.7, 129.8, 130.4, 135.5, 155.8, 171.6, 174.8; HRMS-FAB (M+Na⁺) calcd for $C_{32}H_{35}NaN_3O_6$ 580.2424, found 580.2415.

4.3.10.62. 5-Bromopentanoyl-L-Trp(Boc)-L-Tyr-OBn (24a). To a solution of compound **23** (560 mg, 1.0 mmol) in THF (4 mL) were added H_2O (4 mL), aqueous K_2CO_3 (20%, 1.25 mL), and 5-bromovaleryl

chloride (146 µL, 220 mg, 1.1 mmol) as a solution in THF (1 mL). The reaction mixture was stirred vigorously at room temperature for 8 min and then partitioned between EtOAc (300 mL) and 1 N HCl (250 mL). The organic layer was washed with saturated NaHCO₃, brine (200 mL), and dried over MgSO₄. The solvent was removed by rotary evaporation. The crude material was purified by flash chromatography (EtOAc/hexanes 1:2-1:1) to yield 24a (710 mg, 0.99 mmol, 95%): ¹H NMR (300 MHz, CDCl₃) δ 1.65 (s, 9H), 2.00-2.20 (m, 3H), 2.80-2.95 (dd, J = 6.9, 14.0 Hz, 1H), 2.95-3.05 (dd, J = 6.0, 13.6 Hz, 1H), 3.10-3.20 (d. J = 6.9 Hz,2H). 3.25 - 3.35J = 6.0 Hz, 2H, 4.15-4.35 (m, 2H), 4.95-5.15 (d,J = 6.9 Hz, 2H), 6.45–6.65 (m, 3H), 6.65–6.75 (m, 3H), 7.10–7.22 (m, 1H), 7.25–7.45 (m, 7H), 7.48 (s, 1H), 7.50-7.60 (d, J = 7.5 Hz, 1H), 8.00-8.20 (br d, $J = 6.6 \text{ Hz}, 1\text{H}; ^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 24.3,$ 28.4, 28.6, 32.2, 33.6, 35.6, 37.3, 53.5, 54.0, 67.7, 84.2, 115.5, 115.7, 115.9, 119.4, 123.1, 125.0, 126.9, 129.0, 129.1, 130.6, 130.7, 135.4, 135.7, 150.0, 155.8, 171.1, 171.3, 173.3; HRMS-FAB (M+Na⁺) calcd for BrC₃₁H₃₉NaN₃O₇ 742.2104, found 742.2129.

4.3.10.63. 6-Bromohexanoyl-L-Trp(Boc)-L-Tyr-OBn (24b). Compound 24b was synthesized starting with 6bromohexanoyl chloride using a procedure described for the preparation of compound 24a (725 mg, 0.99 mmol, 99%): 1 H NMR (300 MHz, CDCl₃) δ 1.20– 1.40 (m, 2H), 1.50–1.60 (m, 2H), 1.65 (s, 9H), 2.20–2.35 (m, 2H), 2.05-2.20 (t, J = 6.0 Hz, 2H), 2.80-2.95 (dd, J = 6.0, 14.6 Hz, 1H), 2.96–3.05 (dd, J = 6.0, 14.6 Hz, 1H), 3.10-3.20 (t, J = 6.0 Hz, 2H), 3.25-3.40 (t, J = 9.0 Hz, 2H), 4.15–4.40 (m, 2H), 5.00–5.20 (dd, J = 12.0, 15.0 Hz, 2H, 6.35-6.65 (m, 4H), 6.66-6.75 (d,J = 9.0 Hz, 2H, 7.10-7.20 (m, 2H), 7.27-7.46 (m, 5H),7.48 (s, 1H), 7.50–7.60 (d, J = 6.0 Hz, 1H), 8.00–8.15 (d, J = 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 25.0, 28.0, 28.4, 28.6, 32.8, 33.9, 36.6, 37.3, 53.0, 54.0, 67.7, 77.7, 84.2, 115.6, 115.7, 116.0, 119.4, 123.1, 125.0, 126.9, 129.0, 120.1, 130.6, 130.7, 135.4, 135.8, 150.0, 155.8, 171.1, 171.2, 173.6; HRMS-FAB (M+Na+) calcd for BrC₃₈H₄₄NaN₃O₇ 756.2260, found 756.2275.

8-Bromooctanoyl-L-Trp(Boc)-L-Tyr-OBn 4.3.10.64. (24c). 8-Bromooctanoic acid (224 mg, 1.0 mmol) was dissolved in CH₂Cl₂ (20 mL). To this solution was added oxalyl chloride (170 µL, 254 mg, 2.0 mmol). The reaction mixture was stirred at room temperature for 6 h. The solvent was removed by rotary evaporation to yield the corresponding acid chloride (240 mg, 1.0 mmol, 100%): 1 H NMR (400 MHz, CDCl₃) δ 1.22–1.58 (m, 6H), 1.70–1.80 (m, 2H), 1.80–2.00 (m, 2H), 2.82–2.95 (t, J = 7.2 Hz, 2H), 3.40–3.50 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 27.9, 28.3, 32.6, 33.8, 33.9, 47.0, 173.8. Using the resulting acid chloride as the starting material, compound 24c was synthesized with the procedure described for the preparation of compound **24a** (750 mg, 0.99 mmol, 100%): ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 1.10-1.40 \text{ (m, 7H)}, 1.45-1.56 \text{ (m, 7H)}$ 2H), 1.65 (s, 9H), 1.70–1.90 (m, 2H), 2.10–2.20 (m, 2H), 2.80-2.95 (dd, J = 6.0, 12.0 Hz, 1H), 2.96-3.05(dd, J = 6.0, 12.0 Hz, 1H), 3.06–3.21 (m, 2H), 3.30–

3.40 (t, J = 6.0 Hz, 2H), 4.15–4.40 (m, 2H), 5.00–5.20 (dd, J = 6.0, 21.0 Hz, 2H), 6.40–6.50 (d, J = 9.0 Hz, 1H), 6.55–6.65 (m, 3H), 6.66–6.75 (d, J = 6.0 Hz, 2H), 7.10–7.20 (m, 1H), 7.20–7.40 (m, 6H), 7.48 (s, 1H), 7.50–7.60 (d, J = 9.0 Hz, 1H), 8.00–8.15 (d, J = 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 25.8, 28.3, 28.4, 28.6, 28.8, 29.3, 33.1, 34.3, 36.8, 37.3, 53.5, 54.0, 67.7, 84.1, 115.6, 115.7, 116.0, 119.4, 123.1, 125.0, 126.8, 129.0, 129.1, 130.6, 130.7, 135.4, 135.8, 150.0, 155.9, 171.1, 171.2, 174.0; HRMS-FAB (M+Na⁺) calcd for BrC₄₀H₄₈NaN₃O₇ 784.2573, found 784.2596.

4.3.10.65. Compound 25a. To a solution of 24a (360 mg, 0.5 mmol) in acetone (20 mL) was added NaI (150 mg, 1.0 mmol). The reaction mixture was stirred under reflux for 2 h and cooled to room temperature. The white precipitate was removed by filtration, and the filtrate was concentrated by rotary evaporation. The crude material was purified by a short silica pack (EtOAc/hexanes, 1:1–2:1) to give the corresponding iodide (381 mg, 0.5 mmol, 100%): ¹H NMR (400 MHz, CDCl₃) δ 1.50–1.80 (m, 13H), 2.00–2.20 (m, 2H), 2.85-2.95 (dd, J = 4.8, 10.5 Hz, 1H), 2.95-3.30 (m, 5H), 4.75-4.87 (dd, J = 4.5, 9.9 Hz, 1H), 4.88-4.95 (dd, J = 5.7, 10.8 Hz, 1H), 5.00–5.20 (dd, J = 9.0, 17.4 Hz, 1H), 6.55-6.65 (d, J = 9.0, 6.3 Hz, 2H), 6.65-6.80 (m, 3H), 6.80–7.00 (br s, 1H), 7.10–7.20 (m, 1H), 7.25–7.30 (m, 1H), 7.31–7.40 (m, 5H), 7.45–7.55 (m, 2H), 7.81 (s, 1H), 8.00–8.20 (d, J = 4.5 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 6.2, 14.3, 21.2, 24.0, 26.2, 28.2, 31.8, 32.5, 33.2, 35.0, 36.9, 53.1, 53.7, 60.6, 67.3, 77.4, 83.8, 115.3, 115.6, 119.0, 122.7, 124.6, 126.5, 128.6, 128.7, 130.3, 130.4, 135.1, 149.7, 155.6, 170.8, 171.2, 173.1; HRMS-FAB (M+Na⁺) calcd for $C_{37}H_{42}INa$ -N₃O₇ 790.1965, found 790.1951. The iodide was redissolved in DMF (30 mL). To this solution was added K₂CO₃ (342 mg, 2.5 mmol). The reaction mixture was stirred at room temperature for 10 h and then diluted with EtOAc (200 mL). The organic layer was washed with 1 N HCl (3× 250 mL), saturated NaHCO₃ (200 mL), and brine (200 mL). The organic layer was dried over MgSO₄ and concentrated by rotary evaporation. The crude material was purified by flash chromatography (EtOAc/hexanes 1:1–2:1) to yield **25a** (224 mg, 0.35 mmol, 70%): 1 H NMR (400 MHz, CDCl₃) δ 1.60– 1.70 (m, 11H), 2.10–2.20 (m, 2H), 2.35–2.45 (dd, J = 11.6, 13.4 Hz, 1H), 2.80–2.92 (dd, J = 9.2, 14.0 Hz, 1H), 3.05-3.15 (dd, J = 4.8, 14.0 Hz, 1H), 3.20-3.30(dd, J = 5.2, 13.6 Hz, 1H), 4.10–4.20 (td, J = 4.0, 14.4 Hz, 1H), 4.25–4.32 (td, J = 4.0, 14.0 Hz, 1H), 4.33-4.45 (td, J = 4.0, 14.4 Hz, 1H), 4.85-4.95 (td, J = 3.6, 14.4 Hz, 1H), 5.00–5.20 (dd, J = 12.4, 24.0 Hz, 2H), 5.50-5.55 (d, J = 9.6 Hz, 1H), 5.80-5.90 (d, J = 9.6 Hz, 1H), 6.70-6.80 (m, 2H), 6.80-6.90 (dd, J = 2.4, 12.4 Hz, 1H), 7.05–7.15 (dd, J = 1.6, 8.4 Hz, 1H), 7.20–7.25 (m, 1H), 7.30–7.45 (m, 9H), 7.60–7.70 (d, J = 8.0 Hz, 1H), 8.05–8.20 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 21.8, 25.9, 28.2, 28.9, 36.3, 38.3, 52.3, 53.4, 67.2, 67.4, 77.3, 83.6, 115.1, 115.3, 115.7, 118.6, 119.1, 122.7, 124.5, 124.6, 128.1, 128.4, 128.5, 128.6, 128.7, 130.2, 130.3, 130.5, 131.1, 135.1, 149.6, 155.7, 169.8, 170.6, 172.0; HRMS-FAB (M+Na⁺) calcd for C₃₇H₄₁NaN₃O₇ 662.2842, found 662.2858.

4.3.10.66. Compound **25b.** Compound **25b** was synthe sized starting with 24b using a procedure that was similar to that used to prepare 25a (245 mg, 0.38 mmol, 75%): ¹H NMR (300 MHz, CDCl₃) δ 1.15–1.55 (m, 4H), 1.56–1.80 (m, 12H), 1.90–2.10 (m, 1H), 2.20–2.30 (m, 1H), 2.38-2.55 (dd, J = 12.0, 14.6 Hz, 1H), 2.85-3.00(dd, J = 9.0, 15.0 Hz, 1H), 3.05–3.20 (dd, J = 6.0, 15.0 Hz, 1H), 3.21–3.31 (dd, J = 12.0, 14.6 Hz, 1H), 4.05-4.30 (m, 2H), 4.40-4.55 (m, 1H), 4.85-5.03 (m, 1H), 5.05-5.25 (m, 2H), 5.80-5.90 (d, J = 9.0, 1H), 6.10-6.20 (d, J = 6.0, 1H), 6.70-6.80 (d, J = 9.0, 2H), 6.82-7.00 (m, 2H), 7.15-7.25 (m, 1H), 7.28-7.48 (m, 7H), 7.60-7.70 (d, J = 6.0, 1H), 8.05-8.25 (d, J = 9.0, 1H); 13 C NMR (75 MHz, CDCl₃) δ 24.7, 25.0, 28.2, 28.8, 28.9, 35.9, 38.0, 52.4, 52.7, 67.2, 67.7, 77.4, 83.5, 115.0, 115.3, 116.2, 119.2, 122.7, 124.5, 124.8, 127.7, 128.4, 128.6, 128.7, 130.3, 130.6, 135.2, 135.5, 149.6, 157.4, 169.9, 170.9, 171.9; HRMS-FAB (M+Na⁺) calcd for C₃₈H₄₃NaN₃O₇ 676.2999, found 676.2977.

4.3.10.67. Compound **25c.** Compound **25c** was synthesized starting with 24c using a procedure that was similar to that used to prepare **25a** (259 mg, 0.38 mmol, 76%): ¹H NMR (400 MHz, CDCl₃) δ 1.10–1.50 (m, 9H), 1.50–1.80 (m, 12H), 1.90-2.02 (m, 1H), 2.04-2.20 (m, 1H), 2.60-2.70(dd, J = 8.0, 12.0 Hz, 1H), 2.95-3.07 (dd, J = 8.0, 16.0 Hz,1H), 3.07-3.15 (dd, J = 4.0, 9.0 Hz, 1H), 3.25-3.35 (dd, J = 4.0, 12.0 Hz, 1H), 3.90–4.10 (m, 2H), 4.60–4.70 (m, 1H), 4.85-4.95 (m, 1H), 5.17 (s, 2H), 5.80-5.90 (d, J = 8.0 Hz, 1H), 6.00–6.10 (d, J = 7.6 Hz, 1H), 6.55– 6.65 (d, J = 8.0 Hz, 2H), 6.66-6.75 (d, J = 8.4 Hz, 2H), 7.20–7.30 (m, 2H), 7.30–7.45 (m, 4H), 8.48 (s, 1H), 7.60–7.70 (d, J = 7.6 Hz, 1H), 8.10–8.25 (d, J = 8.0 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 23.5, 24.4, 26.9, 27.4, 27.5, 27.8, 28.2, 36.4, 37.2, 52.7, 52.8, 60.4, 66.8, 67.3, 77.4, 83.7, 115.1, 115.2, 115.3, 119.2, 122.8, 124.7, 124.8, 127.3, 128.5, 128.6, 128.7, 128.8, 130.2, 130.3, 130.5, 135.2, 135.5, 149.6, 157.3, 170.1, 171.0, 172.7; HRMS-FAB (M+Na⁺) calcd for C₄₀H₄₇NaN₃O₇ 704.3312, found 704.3329.

4.3.10.68. Ketone 27a. A solution of benzyl ester 25a (192 mg, 0.30 mmol) in MeOH (20 mL) was hydrogenated over 10% Pd(OH)₂/C (20 mg) at room temperature for 4 h. The catalyst was filtered off and the solvent was removed by rotary evaporation to get the corresponding carboxylic acid. The carboxylic acid was dissolved in CH₂Cl₂ (10 mL). To this solution were added HOBt (122 mg, 0.90 mmol), EDC (173 mg, 0.90 mmol), DIEA (210 μL, 156 mg, 1.20 mmol) and **11a** (46 mg, 0.45 mmol) as a solution in DMF (100 μ L). The reaction mixture was stirred at room temperature for 24 h then partitioned between CH₂Cl₂ (100 mL) and 1 N HCl (100 mL). The organic layer was washed with saturated NaHCO₃ (75 mL) and brine (75 mL), dried over MgSO₄, and concentrated. The crude material was purified by flash chromatography (EtOAc to 10% MeOH/CH₂Cl₂) to yield the corresponding alcohol 26a (140 mg, 0.21 mmol, 70%) as a mixture of two diastereomers. To a solution of the resulting alcohol in CH₂Cl₂ (10 mL) was added Dess–Martin periodinane (135 mg, 0.32 mmol). The reaction mixture was stirred at room temperature for 4 h and then partitioned between CH₂Cl₂ (50 mL) and 10 % Na₂S₂O₃

(50 mL). The organic layer was washed with saturated NaHCO₃ (50 mL) and brine (50 mL), dried over MgSO₄, and concentrated. The crude material was purified by flash chromatography (EtOAc/hexanes, 4:1) to yield ketone 27a (105 mg, 0.17 mmol, 81%) as a mixture of two diastereomers: ¹H NMR (300 MHz, CDCl₃) δ 1.35–1.60 (m, 3H), 1.60–1.70 (m, 9H), 1.80–2.25 (m, 3H), 2.70– 3.10 (m, 2H), 3.10-3.60 (m, 1H), 3.61-3.85 (m, 1H), 3.85-4.05 (m, 1H), 4.10-4.25 (m, 2H), 4.26-4.55 (m, 4H), 4.60–4.80 (m, 1H), 5.45–5.75 (m, 1H), 5.76–6.10 (m, 1H), 6.20–6.60 (m, 1H), 6.65–6.80 (m, 1H), 6.80– 7.10 (m, 3H), 7.10-7.26 (m, 1H), 7.28-7.40 (m, 2H), 7.48–7.52 (m, 1H), 7.53–7.65 (m, 1H), 8.00–8.20 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 21.9, 27.4, 27.9, 28.1, 28.4, 28.6, 35.6, 35.7, 36.7, 53.1, 54.5, 54.7, 55.3, 55.5, 68.1, 68.4, 68.9, 69.8, 70.4, 70.5, 84.8, 84.9, 115.4, 115.5, 115.9, 116.6, 117.5, 118.1, 118.3, 118.7, 118.8, 119.5, 119.6, 119.7, 123.1, 123.4, 124.5, 124.6, 124.7, 125.1, 125.4, 128.6, 128.7, 130.3, 130.4, 130.5, 131.5, 131.6, 135.6, 150.0, 157.4, 157.8, 170.5, 170.9, 171.1, 171.3, 171.6, 171.9, 173.3, 173.6, 210.8, 211.1; HRMS- $FAB(M+Na^{+})$ calcd for $C_{34}H_{40}NaN_{4}O_{8}$ 655.2744, found 655.2736.

4.3.10.69. Ketone 27b. Ketone 27b was synthesized starting with 25b using a procedure that was similar to that used to prepare **27a** (116 mg, 0.18 mmol, 48% for two steps): 1 H NMR (400 MHz, CDCl₃) δ 1.10–1.32 (m, 4H), 1.33–1.50 (m, 1H), 1.55–1.78 (m, 11H), 1.80– 2.25 (m, 3H) 2.62-3.12 (m, 2H), 3.13-3.42 (m, 2H), 3.78-4.02 (m, 2H), 4.03-4.33 (m, 4H), 4.35-4.65 (m, 3H), 4.66–4.82 (m, 1H), 5.75–6.15 (m, 1H), 6.16–6.38 (m, 1H), 6.60–6.95 (m, 4H), 6.98–7.12 (m, 1H), 7.15– 7.26 (m, 1H), 7.30–7.65 (m, 3H), 8.00–8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.0, 24.0, 24.2, 25.0, 25.1, 25.3, 25.5, 27.6, 27.9, 28.2, 28.4, 28.6, 35.2, 35.4, 35.7, 35.8, 36.4, 52.8, 52.9, 53.1, 53.2, 53.8, 53.9, 54.4, 54.5, 54.9, 68.0, 68.2, 68.8, 68.9, 69.4, 69.6, 69.8, 70.1, 77.3, 84.0, 84.4, 115.0, 115.1, 115.4, 115.5, 116.1, 116.8, 116.9, 117.9, 118.1, 118.9, 119.0, 119.1, 122.8, 123.0, 124.2, 124.3, 124.7, 125.0, 125.1, 127.4, 127.6, 127.8, 130.2, 130.3, 130.4, 130.6, 130.8, 135.3, 149.6, 157.9, 158.0, 158.4, 159.5, 170.5, 170.6, 170.7, 170.8, 170.9, 171.2, 171.4, 171.6, 173.4, 173.6, 173.8, 173.9, 210.5, 210.9, 211.1; HRMS-FAB (M+Na⁺) calcd for C₃₅H₄₂NaN₄O₈ 669.2900, found 669.2918.

4.3.10.70. Ketone 27c. Ketone 27c was synthesized starting with 25c using a procedure that was similar to that used to prepare 27a (121 mg, 0.18 mmol, 52% for two steps): ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 1.10–1.50 (m, 10H), 1.55–1.85 (m, 13H), 1.80–2.00 (m, 2H), 2.30–2.50 (m, 1H), 3.10–3.40 (m, 3H), 3.70–4.07 (m, 3H), 4.08-4.25 (m, 3H), 4.35-4.55 (m, 2H), 4.15-4.30 (m, 1H), 5.65–5.90 (m, 2H), 6.55–6.65 (m, 2H), 6.66– 6.75 (m, 2H), 6.80-6.95 (m, 1H), 6.96-7.10 (m, 1H), 7.30–7.40 (m, 1H), 7.35–7.48 (m, 1H), 7.50–7.58 (m, 1H), 7.59–7.65 (m, 1H), 8.00–8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.5, 26.0, 26.2, 26.7, 26.8, 27.4, 27.5, 28.2, 35.2, 36.0, 52.1, 52.2, 54.1, 54.4, 54.5, 54.8, 66.4, 66.6, 68.8, 69.6, 70.1, 70.2, 84.5, 114.7, 114.8, 115.0, 115.2, 115.5, 115.6, 116.1, 118.9, 119.0, 119.1, 122.8, 123.2, 124.3, 124.8, 125.3, 125.4, 126.6, 126.7, 130.1, 130.4, 130.5, 130.7, 130.8, 135.4, 149.6, 157.7, 170.2, 170.3, 170.8, 171.1, 174.7, 174.8, 211.3, 211.8; HRMS-FAB (M+Na $^+$) calcd for $C_{37}H_{46}NaN_4O_8$ 697.3213, found 697.3223.

4.3.10.71. Inhibitor 6a. Compound **6a** was synthesized starting with 27a using general method I (50 mg, 94 µmol, 78%) as a mixture of two diastereomers: ¹H NMR (400 MHz, DMSO- d_6) δ 1.10–1.65 (m, 4H), 1.66–1.95 (m, 1H), 1.96–2.15 (m, 1H), 2.35–3.50 (m, 1H), 2.65–2.95 (m, 2H), 2.98–3.10 (m, 1H), 3.70–3.90 (m, 2H), 3.91-4.20 (m, 4H), 4.22-4.40 (m, 2H), 4.45-4.75 (m, 1H), 6.55–6.82 (m, 1H), 6.83–7.10 (m, 2H), 7.11–7.35 (m, 3H), 7.36–7.50 (m, 1H), 7.51–7.70 (m, 1H), 7.95–8.50 (m, 2H); ¹³C NMR (100 MHz, DMSO d_6) δ 22.0, 26.2, 29.5, 35.4, 37.7, 37.8, 52.7, 53.7, 53.8, 54.1, 54.2, 54.3, 68.4, 69.0, 69.1, 70.1, 70.2, 110.5, 110.6, 110.7, 110.8, 111.7, 111.9, 118.0, 118.1, 118.56, 118.61, 118.8, 119.0, 119.1, 121.2, 121.3, 121.4, 123.8, 124.7, 128.0, 129.8, 129.9, 130.5, 131.8, 136.5, 136.6, 152.0, 155.5, 157.9, 171.5, 171.6, 171.7, 171.8, 171.9, 212.0, 212.1; HRMS-FAB (M+Na⁺) calcd for C₂₉H₃₂NaN₄O₆ 555.2220, found 555.2232.

4.3.10.72. Inhibitor **6b.** Compound **6b** was synthesized starting with **27b** using general method I (42 mg, 77 µmol, 64%): 1 H NMR (400 MHz, DMSO- d_6) δ ; 13 C NMR (100 MHz, DMSO- d_6) δ 23.7, 25.3, 26.0, 28.8, 29.3, 29.6, 34.6, 35.0, 36.9, 52.1, 52.9, 53.8, 53.9, 54.4, 54.6, 55.3, 67.7, 68.5, 69.4, 70.6, 110.6, 111.1, 112.0, 112.2, 115.4, 116.6, 116.9, 117.7, 118.7, 119.1, 121.7, 122.9, 124.2, 124.8, 128.0, 128.4, 129.1, 130.0, 130.8, 131.1, 131.4, 135.6, 136.8, 136.9, 152.3, 157.4, 157.8, 171.3, 171.5, 171.6, 171.7, 172.0, 172.1, 172.2, 172.3, 172.4, 212.5, 212.8; HRMS-FAB (M+Na⁺) calcd for $C_{30}H_{34}NaN_4O_6$ 569.2376, found 569.2391.

4.3.10.73. Inhibitor 6c. Compound 6c was synthesized starting with 27c using general method I (46 mg, 81 μ mol, 68%): ¹H NMR (400 MHz, DMSO- d_6) δ 0.90–1.10 (m, 1H), 1.11–1.45 (m, 5H), 1.46–1.65 (m, 2H), 1.70–1.90 (m, 1H), 1.95–2.10 (m, 1H), 2.55–3.05 (m, 3H), 3.70–3.85 (m, 1H), 3.86–4.20 (m, 4H), 4.20– 4.65 (m, 3H), 6.70–6.80 (m, 2H), 6.90–7.15 (m, 2H), 7.16–7.35 (m, 1H), 7.36–7.70 (m, 2H), 7.90–8.15 (m, 1H), 8.16–8.50 (m, 1H); ¹³C NMR (100 MHz, DMSO d_6) δ 24.2, 25.0, 27.1, 27.5, 28.0, 28.3, 28.6, 35.5, 37.1, 37.2, 52.2, 52.8, 53.0, 53.5, 53.6, 54.1, 54.2, 54.3, 66.8, 69.0, 69.2, 70.2, 70.3, 110.4, 110.5, 111.7, 115.2, 115.5, 115.8, 115.9, 116.6, 116.7, 118.6, 118.7, 118.8, 119.1, 121.3, 124.0, 124.5, 124.6, 124.7, 128.1, 129.6, 129.7, 130.6, 130.8, 131.1, 135.4, 136.5, 136.6, 152.0, 156.8, 171.1, 171.2, 171.6, 171.8, 171.9, 172.0, 212.1, 212.2; HRMS-FAB (M+Na⁺) calcd for C₃₂H₃₈NaN₄O₆ 597.2689, found 597.2672.

Acknowledgment

This research was supported by the NIH NIGMS (Grant R01 GM057327 to CTS).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc. 2006.08.040.

References and notes

- 1. Seife, C. Science 1997, 277, 1602.
- 2. Stubbs, M. T.; Bode, W. Thromb. Res. 1993, 69, 1.
- 3. Selkoe, D. J. Science 1997, 275, 630.
- Silva, A. M.; Lee, A. Y.; Gulnik, S. V.; Maier, P.; Collins, J.; Bhat, T. N.; Collins, P. J.; Cachau, R. E.; Luker, K. E. *Proc. Natl. Acad. Sci. U.S.A.* 1996, 93, 10034.
- Serveau, C.; Lalmanach, G.; Juliano, M. A.; Scharfstein, J.; Juliano, L.; Gauthier, F. Biochem. J. 1996, 313, 951.
- 6. Gibson, W.; Hall, M. R. Drug Des. Discov. 1997, 15, 39.
- Johnson, L. L.; Dyer, R.; Hupe, D. J. Curr. Opin. Chem. Biol. 1998, 2, 466.
- 8. Yan, S.; Sameni, M.; Sloane, B. F. J. Biol. Chem. 1998, 379, 113.
- Rakic, J. M.; Maillard, C.; Jost, M.; Bajou, K.; Masson, V.; Devy, L.; Lambert, V.; Foidart, J. M.; Noël, A. Cell. Mol. Life Sci. 2003, 60, 463.
- 10. Okamoto, S. Keio J. Med. 1959, 8, 211.
- Okamoto, S.; Sato, S.; Tanaka, Y.; Okamoto, U. Keio J. Med. 1964. 13, 177.
- Okada, Y.; Tsuda, Y.; Teno, N.; Wanaka, K.; Bohgaki, M.; Hijikata-Okunomiya, A.; Naito, T.; Okamoto, S. Chem. Pharm. Bull. 1988, 36, 1289.
- Teno, N.; Wanaka, K.; Okada, Y.; Tsuda, Y.; Okamoto, U.; Hijikata-Okunomiya, A.; Naito, T.; Okamoto, S. Chem. Pharm. Bull. 1991, 39, 2340.
- Okada, Y.; Tsuda, Y.; Tada, M.; Wanaka, K.; Okamoto, U.; Hijikata-Okunomiya, A.; Okamoto, S. *Chem. Pharm. Bull.* 2000, 48, 1964.
- Okada, Y.; Matsumoto, Y.; Tsuda, Y.; Tada, M.; Wanaka, K.; Hijikata-Okunomiya, A.; Okamoto, S. Chem. Pharm. Bull. 2000, 48, 184.
- Tsuda, Y.; Tada, M.; Wanaka, K.; Okamoto, U.; Hijik-ata-Okunomiya, A.; Okamoto, S.; Okada, Y. Chem. Pharm. Bull. 2001, 49, 1457.
- Okada, Y.; Tsuda, Y.; Wanaka, K.; Tada, M.; Okamoto, U.; Okamoto, S.; Hijikata-Okunomiya, A.; Bokonyi, G.; Szenda, B.; Keri, G. *Bioorg. Med. Chem. Lett.* 2000, 10, 2217.
- Lee, E.; Enomoto, R.; Takemura, K.; Tsuda, Y.; Okada, Y. *Biochem. Pharmacol.* 2002, 63, 1315.
- Enomoto, R.; Sugahara, C.; Komai, T.; Suzuki, C.; Kinoshita, N.; Hosoda, A.; Yoshikawa, A.; Tsuda, Y.; Okada, Y.; Lee, E. *Biochem. Biophys. Acta* 2004, 1674, 291.
- Conroy, J. L.; Sanders, T. C.; Seto, C. T. J. Am. Chem. Soc. 1997, 119, 4285.
- 21. Sanders, T. C.; Seto, C. T. J. Med. Chem. 1999, 42, 2969.
- Abato, P.; Yuen, C. M.; Cubanski, J. Y.; Seto, C. T. J. Org. Chem. 2002, 67, 1184.
- 23. Conroy, J. L.; Seto, C. T. J. Org. Chem. 1998, 63, 2367.
- Abato, P.; Conroy, J. L.; Seto, C. T. J. Med. Chem. 1999, 42, 4001.
- 25. Xue, F.; Seto, C. T. J. Org. Chem. 2005, 70, 8309.
- 26. Xue, F.; Seto, C. T. J. Med. Chem. 2005, 68, 6908.

- Lai, Y.-S.; Mendoza, J. S.; Jagdmann, G. E.; Menaldino,
 D. S.; Biggers, C. K.; Heerding, J. M.; Wilson, J. W.; Hall,
 S. E.; Jiang, J. B.; Janzen, W. P.; Ballas, L. M. *J. Med. Chem.* 1997, 40, 226.
- Marquis, R. W.; Yamashita, D. S.; Ru, Y.; LoCastro, S. M.; Oh, H.-J.; Erhard, K. F.; DesJarlais, R. L.; Head, M. S.; Smith, W. W.; Zhao, B.; Janson, C. A.; Abdel-Meguid, S. S.; Tomaszek, T. A.; Levy, M. A.; Veber, D. F. J. Med. Chem. 1998, 41, 3563.
- 29. Marquis, R. W.; Ru, Y.; Zeng, J.; Lee Trout, R. E.; LoCastro, S. M.; Gribble, A. D.; Witherington, J.; Fenwick, A. E.; Garnier, B.; Tomaszek, T.; Tew, D.; Hemling, M. E.; Quinn, C. J.; Smith, W. W.; Zhao, B.; McQueney, M. S.; Janson, C. A.; D'Alessio, K.; Veber, D. F. J. Med. Chem. 2001, 44, 725.
- Marquis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.; Yamashita, D. S.; Oh, H.-J.; Erhard, K. F.; Davis, L. D.; Tomaszek, T. A.; Tew, D.; Salyers, K.; Proksch, J.; Ward, K.; Smith, B.; Levy, M.; Cummings, M. D.; Haltiwanger, R. C.; Trescher, G.; Wang, B.; Helming, M. E.; Quinn, C. J.; Cheng, H.-Y.; Lin, F.; Smith, W. W.; Janson, C. A.; Zhao, B.; McQueney, M. S.; D'Alessio, K.; Lee, C.-P.; Marzulli, A.; Dodds, R. A.; Blake, S.; Hwang, S.-M.; James, I. E.; Gress, C. J.; Bradley, B. R.; Lark, M. W.; Gowen, M.; Veber, D. F. J. Med. Chem. 2001, 44, 1380.
- Marquis, R. W.; James, I.; Zeng, J.; Lee Trout, R. E.; Thompson, S.; Rahman, A.; Yamashita, D. S.; Xie, R.; Ru, Y.; Gress, C. J.; Blake, S.; Lark, M. A.; Hwang, S.-M.; Tomaszek, T.; Offen, P. H.; Head, M. S.; Cummings, M. D.; Veber, D. F. J. Med. Chem. 2005, 48, 6870.
- 32. Yamashita, D. S.; Marquis, R. W.; Xie, R.; Nidamarthy, S. D.; Oh, H.-J.; Jeong, J. U.; Erhard, K. F.; Ward, K. W.; Roethke, T. J.; Smith, B. R.; Cheng, H.-Y.; Geng, X.; Lan, F.; Offen, P. H.; Wang, B.; Nevins, N.; Head, M. S.; Haltiwanger, R. C.; Sarjeant, A. A. N.; Liable-Sands, L. M.; Zhao, B.; Smith, W. W.; Janson, C. A.; Gao, E.; Tomaszek, T.; McQueney, M.; James, I. E.; Gress, C. J.; Zembryki, D. L.; Lark, M. W.; Veber, D. F. J. Med. Chem. 2006, 49, 1597.
- Tyndall, J. D. A.; Nall, T.; Fairlie, D. P. Chem. Rev. 2005, 105, 973.
- Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Fairlie,
 D. P. Chem. Rev. 2004, 104, 6085.
- Reid, R. C.; Pattenden, L. K.; Tyndall, J. D. A.; Martin, J. L.; Walsh, T.; Fairlie, D. P. J. Med. Chem. 2004, 47, 1641.
- Tyndall, J. D. A.; Fairlie, D. P. Curr. Med. Chem. 2001, 8, 893.
- Reid, R. C.; Kelso, M. J.; Scanlon, M. J.; Fairlie, D. P. J. Am. Chem. Soc. 2002, 124, 5673.
- Nicolaides, E.; DeWald, H.; Westland, R.; Lipnik, M.; Posler, J. J. Med. Chem. 1968, 11, 74.
- Krapcho, A. P.; Kuell, C. S. Synth. Commun. 1990, 20, 2559.
- 40. Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649.
- 41. Wen, J. J.; Crews, C. M. Tetrahedron Lett. 1998, 39, 779.
- 42. Pedroso, E.; Grandas, A.; Heras, X.; Eritja, R.; Giralt, E. *Tetrahedron Lett.* **1986**, *27*, 743.
- 43. Fenwick, A. E.; Gribble, A. D.; Ife, R. J.; Stevens, N.; Witherington, J. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 199.
- Harris, J. L.; Backes, B. J.; Leonetti, F.; Mahrus, S.;
 Ellman, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7754.
- Simon, R. J.; Kania, R. S.; Zuchermann, R. N.; Huebner,
 V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.;
 Rosenberg, S. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367.